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ABSTRACT 

OBJECTIVES: Sport-related concussion (SRC) is a mild form of neurotrauma, resulting in 

transient cognitive deficits and symptoms. Staggering heterogeneity in its clinical manifestation 

has been observed in practice. The purpose of the current study was to attempt to empirically 

elucidate neuropsychological subgroups of SRC.  

METHODS: An archival consecutive clinical case series of 1366 (872 male, 494 female; 

Mage=15.6, SDage=1.9) post-concussion athletes, referred for neuropsychological testing was 

utilized in this study. Athletes were administered the Immediate Post-Concussion Assessment 

and Cognitive Testing (ImPACT), including the Post-Concussion Symptom Scale (PCSS). A 

priori analyses included Latent Class Analysis (LCA), and post-hoc analyses included cluster 

analysis, ANOVA and MANOVA.  

RESULTS: The LCA revealed no definite structure in the data, in either the overall sample or an 

acute sample (≤7 days post-concussion). There was vast disagreement between fit indices, with 

some indicating no cluster solution was appropriate. Cluster analysis yielded two cluster 

solutions, both of which primarily reflected levels of performance rather than distinct 

neuropsychological clusters. However, one cluster from each sample was comprised of poor 

cognitive scores and low symptom reporting.  

CONCLUSIONS: No distinct neuropsychological profiles emerged from the data. Although 

there was one potentially interesting cluster from each of the solutions, the majority of solutions 

reflected levels of performance and reporting. Although it is possible that there are no subgroups 

of SRC, this question is far from resolved.  
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CHAPTER 1: 

INTRODUCTION AND BACKGROUND 

Traumatic brain injury (TBI) is a leading global health concern in society today. 

Conservative estimates of its incidence report that approximately 10 million TBIs occur annually 

on a global scale (Hyder, Wunderlich, Puvanachandra, Gururaj, & Kobusingye, 2007). In the 

United States alone, there are 1.1 million annual emergency room visits, with estimates of total 

all-severity (including mild, mild-complicated, moderate, and severe) TBIs in the United States 

ranging from 1.4 million to 1.7 million total injuries, excluding military-related TBIs, TBIs 

treated in private physicians’ offices, and those that never have contact with medical institutions 

(Langlois, Rutland-Brown, & Wald, 2006; Faul, Likang, Wald & Coronado, 2010). The rates in 

Canada are similarly high, with the incidence reported to be approximately 0.5% of the 2014 

Canadian population, or a staggering 155,000 (Rao, McFaull, Thompson, & Jayaraman, 2017). 

These same authors report that the Canadian incidence of TBI in 2014 was more than double that 

in 2005, at 3.2% and 1.4% respectively. The reasons for this are unclear, but it is possible that an 

increased recognition of the importance of reporting and seeking medical assistance for milder 

injuries might be a contributing factor. Furthermore, Langlois, Rutland-Brown, and Thomas 

(2004) estimate that all-severity TBI results in approximately 50,000 annual deaths in the United 

States, and 4.5 million annual deaths worldwide (World Health Organization [WHO], 2004), 

accounting for approximately one third of injury related deaths in the United States (Roebuck-

Spencer & Cernich, 2014). These are likely underestimations of the true incidence of TBI, 

because a large proportion of those who sustain a TBI never have contact with medical 

institutions. Estimates of proportions of those with TBIs who have contact with medical 

institutions range from 16% to 25% (Fife, 1987; McCrea, 2008). The aforementioned high 
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incidence rates combined with high rates of resulting disability and death underscore the 

importance of studying TBI of all severities. Mild TBI, or concussion, presents unique 

challenges given its ubiquity and complexity. Therefore, the purpose of the current study was to 

contribute to the knowledge about mild TBI by attempting to delineate subgroups of sport-

related concussion, based on neurocognitive data.  

Classification of Injury Severity 
 
 Traumatic brain injury occurs along a continuum of severity, along which it is typically 

classified into three categories: severe (STBI), moderate (MTBI), and mild (mTBI). There are 

various methods of classifying TBIs into these severity ratings, with the most frequently applied 

being the Glasgow Coma Scale (GCS; Teasdale & Jennett, 1974). The GCS assesses level of 

responsiveness in eye opening, verbalization, and motor responses. The scale ranges from 3 to 

15, with lower scores indicating lower levels of responsiveness. STBI is delineated by scores less 

than or equal to eight, MTBI requires scores between nine and twelve, and mTBI is defined by 

scores greater than thirteen (Roebuck-Spencer & Cernich, 2014).  

 Another common severity classification system for TBI is the duration of loss of 

consciousness (LOC). The specific criteria for classification of a particular severity vary 

depending on the source, but one such classification system defines LOC longer than 24 hours as 

STBI, less than 24 hours but more than 30 minutes as MTBI, and less than 30 minutes as mTBI 

(Department of Defense and Department of Veterans Affairs, 2008). Similarly, the duration of 

post-traumatic amnesia (PTA), or the loss of memory for events that happen in the period 

following the injury, is often used as an additional metric for the classification of injury severity. 

Longer intervals of PTA are thought to indicate more severe TBI (Lezak et al., 2012), a notion 

that is supported by the finding that PTA duration is highly correlated with GCS scores (Sherer, 
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Struchen, Yablon, Wang, & Nick, 2008). However, while these classification systems are very 

useful and applicable to severe and moderate TBI, there is debate about their applicability to 

mTBI. For example, the GCS exhibits a ceiling effect, such that patients with mTBI often 

achieve scores of 15 (McCrea, 2008). Additionally, it is often the case that patients with mTBI 

did not experience LOC or PTA, limiting the usefulness of these metrics. Therefore, it appears 

that mTBI is a special case regarding the diagnosis and management of TBI. As such, a unique 

set of recommendations for the assessment of mTBI have been developed. These will be 

discussed below.  

Mild Traumatic Brain Injury 
Definitions of mTBI 
 
  Mild TBI has historically been a difficult condition to define with consensus. It is 

currently evaluated using a combination of neurocognitive tests and self-report symptomology 

(McCrory et al., 2013), with each injury manifesting as a unique combination of cognitive 

deficits and symptoms. This heterogeneity in presentation has resulted in multiple definitions of 

the injury. Another issue that commonly plagues attempts to adequately define mTBI is the 

controversy over the definition of mTBI versus concussion. Although many researchers and 

clinicians use the two terms interchangeably, there are some who advocate for the differentiation 

of the two. The three most recent consensus statements on concussion in sport (McCrory et al., 

2009; McCrory et al., 2013, McCrory et al., 2017) have acknowledged this controversy. 

Although they did not report consensus on the matter, the Zurich statement acknowledges that 

concussion is a subset of TBI, and that concussion is “the historical term representing low 

velocity injuries that cause brain ‘shaking’ resulting in clinical symptoms and which are not 

necessarily related to a pathological injury” (McCrory et al., 2013, pg. 179). The most recent 

consensus statement also briefly addresses this controversy, stating that often the term mild 
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traumatic brain injury “is used interchangeably with concussion; however, this term is similarly 

vague and not based on validated criteria in this context.” (McCrory et al., 2017, pg. 2) However, 

the pathophysiology of mTBI and concussion are identical, they manifest as similar cognitive 

deficits and symptomology, and except for complicated mTBI (discussed below) there are no 

structural aberrances visible to conventional structural neuroimaging methods. In my view, 

concussion is merely an instance of a mTBI that falls at the mild end of the continuum of 

severity within mTBI.  

There are, however, contextual factors that do suggest the use of one term over the other. 

For example, concussion is often the preferred vernacular when referring to mTBI acquired in an 

athletic context. There are additionally inherent problems with the use of the term mTBI outside 

of the academic setting. There is conflicting evidence on this topic. For example, the term “mild” 

could lead laypeople to underestimate the severity of the injury (Reynolds et al., 2017). 

Conversely, the term “traumatic brain injury” might cause them equate mTBI with its more 

severe relatives (Dematteo et al., 2010). In general, concussion is a more accessible term that is 

often preferred for communicating the nature of the brain injury to clients and their caregivers. 

For these reasons, the terms concussion and mTBI will be used interchangeably in this paper.   

 As mentioned above, various groups have propounded several largely consistent 

definitions of mTBI and concussion. The most commonly cited definition comes from The Mild 

Traumatic Brain Injury Committee of the Head Injury Interdisciplinary Special Interest Group of 

the American Congress of Rehabilitation Medicine (ACRM). The ACRM (Kay et al., 1993) 

defines mTBI as:  

a traumatically induced physiological disruption of brain function, as manifested by at least one 
of the following: 
1. any period of loss of consciousness; 
2. any loss of memory for events immediately before or after the accident; 
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3. any alteration in mental state at the time of the accident (e.g., feeling dazed, disoriented, or 
confused); and 
4. focal neurological deficit(s) that may or may not be transient; but where the severity of the 
injury does not exceed the following: 

• loss of consciousness of approximately 30 minutes or less; 
• after 30 minutes, an initial Glasgow Coma Scale (GCS) of 13-15; and 
• posttraumatic amnesia (PTA) not greater than 24 hours. (p. 86). 

 
In the sports-related context, the 5th International Conference on Concussion in Sport 

held in Berlin (McCrory et al., 2017) outlined the following definition of concussion: a brain 

injury resulting in a complex set of pathophysiological processes in the brain, caused by a direct 

or indirect insult to the brain, with rapid onset of transient symptoms, reflecting functional rather 

than structural changes, and may include (but not necessarily) loss of consciousness. Symptoms 

typically resolve quickly, but occasionally last for prolonged periods of time. This most recent 

consensus statement stipulated that the clinical symptoms cannot be explained by drug or alcohol 

use or physical or psychological comorbidities. Clearly these two definitions are strikingly 

consistent, with the definition of sports-related concussion definition seemingly referring to a 

milder injury.  

It is, however, important to differentiate mTBI from complicated mTBI. The latter is 

defined as a TBI meeting criteria (GCS, PTA, LOC) for a mild classification, but with evidence 

of brain lesion or bleeding (Griffen & Hanks, 2014). The cognitive and affective effects of this 

injury have been shown to be more severe than those of uncomplicated mTBI (Borgaro, 

Prigatano, Kwasnica, & Rexer, 2009; Iverson, 2006a). Indeed, it has even been shown to more 

closely resemble the effects of moderate TBI than mTBI (Kashluba, Hanks, Casey, & Millis, 

2008). For this reason, this injury is not included in the current definition of mTBI, and will be 

differentiated throughout this paper.  

Epidemiology of Mild Traumatic Brain Injury 
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 Mild TBI is one of the most complex and controversial conditions in the field of 

Neuropsychology. Approximately 80% of the total number of TBIs the United States are 

classified as mild (McCrea, 2008). Estimates suggest that approximately 110 in 100,000 

Canadians will experience concussion (Gordon, Dooley, & Wood, 2006), while the rates are 

higher in the United States with estimates ranging from 1.6 to 3.8 million (Bazarian et al., 2005; 

Langlois et al., 2006; McCrea, 2008). However, these rates are likely underestimates of the true 

incidence of the injury because many people who sustain a mTBI have no contact with medical 

institutions at any level. Although this is an issue with epidemiological research in all-severity 

TBI, it is particularly salient in mTBI given the mild nature of the injury and cultural pressures to 

“shake it off.” 

 The demographic factors that predispose one to sustain TBI in general, appear to hold 

true in cases of mTBI. In an epidemiological study of mTBI in the United States, Bazarian and 

colleagues (2005) report that children less than 5 years old are at the highest risk of mTBI, with 

an incidence rate of 1115.2/100,000, followed by ages 5-14 and 15-24, with incidence rates of 

733.3/100,000 and 688.7/100,000, respectively. The rates continue to drop over the course of the 

lifespan, until ages greater than 74 years, when the incidence rate spikes to an estimated 

480.1/100,000. This distribution reflects a similar pattern to that seen in all-severity TBI, such 

that the youngest and oldest in the population are at the greatest risk of injury. Regarding 

ethnicity, Native Americans are most at risk, with an incidence of 1026.2/100,000, followed by 

African Americans and Caucasians with rates of 624.6/100,000 and 491.0/100,000, respectively. 

In terms of external cause of injury, falls and MVA were the most incident, with rates of 

149.4/100,000 and 115.4/100,000, while sports-related mTBI has a lower incidence, with a rate 

of 32.3/100,000.  
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 Given its high incidence rates, mTBI poses a large economic burden on society. While 

more severe TBI requires more intensive care, thus incurring significant medical costs, the high 

incidence of mTBI compared to those of moderate and severe TBI place its cost in competition 

with its more severe counterparts. The CDC (1999) provided estimates that the total cost of all-

severity TBI in 1995 was somewhere in the range of 56 billion dollars in the United States, with 

mTBI accounting for 16.7 billion dollars of that cost; the costs in Canada are similarly high. 

Chen et al. (2012) showed that direct costs of TBI in Ontario alone are 120.7 million dollars. 

These figures are likely underestimates because current incidence rates are likely too low, and 

these figures do not include loss of productivity or indirect costs incurred by family members of 

patients with TBI. Little is known about the costs incurred from loss of productivity and delayed 

return to work, but they are suspected to be sizeable (McCrea, 2008). So although mTBI is, as 

the name suggests, a relatively mild injury, it still poses substantial economic burden on not only 

individuals who sustain the injury and their caregivers, but to society through direct and indirect 

medical costs, combined with lost productivity.  

The Biomechanics of Concussion 
 
 A diagnosis of concussion requires the occurrence of an insult to the brain. There are, 

however, various potential mechanisms for this impact that could result in disparate clinical 

presentations. The first distinction to be made is injuries due to primary impact to the head 

versus inertial forces (Meaney & Smith, 2011). That is, concussion can result from an object 

colliding directly with the head, but this is not required. Concussion can also result when the 

primary force is to another part of the body, resulting in inertial (acceleration and deceleration) 

forces to the brain. For instance, in American football, if a player is tackled, the primary force is 

typically to the abdomen/chest regions, but the force to those areas results in rapid acceleration 
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of the head. This can result in the shaking of the brain and its collision with the inside of the 

skull, resulting in concussion. That is, the brain shakes within the skull, and makes contact with 

the skull, leading to temporary disruption of function. This will be discussed in more detail 

below.  

The second distinction that must be made is the direction of the forces acting on the 

brain. That is, the head could be subject to linear, or oblique/rotational forces. Linear forces are 

those that hit the head “straight on,” at the head’s centre of gravity and perpendicular to the head. 

Oblique forces are those that occur at a non-orthogonal angle to the head and do not coincide 

with the head’s centre of gravity. These directional forces result in differences in the nature of 

the energy transfer from the external impact to the brain. Linear forces result in semi-focal 

impact between the brain and the skull, while oblique forces cause the head and the brain to 

rotate, resulting in the pulling apart or shearing of the brain. That is, linear forces cause two types 

of impact between the brain and the skull. The first is called a coup injury, and refers to the 

initial point of impact between the brain and the skull. The second is called a contrecoup injury, 

and refers to the second impact of the brain with the opposite side of the skull to the initial 

impact. In other words, if the external object collides with the front of the head, the brain will 

first collide with the front of the skull (coup injury). The second step would be when the head 

rebounds, and the brain sustains an impact with the back of the skull (contrecoup injury). 

Although concussion is fundamentally a diffuse injury, the topographical locus of impact on the 

brain may lead to differential effects and trajectories of progression of the resulting injury.  

Rotational forces, on the other hand, cause more shearing of axons in the brain. That is, 

when the brain is rotated quickly, it can compromise the integrity of the myelin sheaths of the 

axons, resulting in deficits and symptomology. This is discussed further below. So, while 
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concussion is generally regarded as a homogeneous injury, there are many variables to consider 

when contemplating the resulting presentation. Different forces acting on the brain in different 

locations and in different directions could result in different clinical presentations following 

concussion.  

The Pathophysiology of Concussion 
 
 Concussion results in a transient disruption of brain function, in the absence of structural 

damage that is detectable by conventional imaging tools. Giza and Hovda (2014) outline the 

pathophysiological mechanisms of concussion, and a brief discussion will be presented here. 

Following a biomechanical force to the brain, there is a metabolic cascade of events, resulting in 

an energy crisis. The force on the brain results in mechanoporation of the neuronal membranes, 

resulting in an efflux of potassium ions and an influx of calcium and sodium ions. This results in 

a large increase in the release of glutamate. Attempting to return to its resting state, the neuron’s 

ATP-dependent ionic pumps shift into overdrive, and thus require more energy. All of this 

occurs in the context of reduced cerebral blood flow (CBF), that occurs following insult to the 

brain. In other words, there is a mismatch between the supply and demand for energy in the 

brain.  

 These authors (Giza & Hovda, 2014) additionally provide a conceptual framework for the 

pathophysiological underpinnings of frequently reported post-concussion symptoms and deficits. 

For example, they suggest that perhaps the ionic flux observed after concussion underpins the 

experience of headache and other somatic symptoms such as nausea, dizziness, and so on. 

Furthermore, they suggest that the axonal dysfunction could cause the slowed cognition 

following concussion, and that altered or dysfunctional neurotransmission may underlie other 

cognitive impairments. Although much research is still needed in the development of theories 
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regarding the physiological underpinnings of post-concussion symptoms, this could suggest 

differential presentations following concussion dependent upon injury characteristics. For 

example, Meaney and Smith (2011) assert that rotational forces are more likely to result in 

axonal shearing, and thus injuries from rotational forces might be more likely to exhibit the 

pursuant slowed cognition. This is supported by the finding that advanced structural imaging 

techniques such as diffusion tensor imaging have detected mechanically-induced diffuse 

traumatic axonal injury (TAI) after concussion. Conversely, if the forces acting on the brain are 

linear or oblique, and thus result in more focal impact between the brain and the skull, this could 

present differently depending on the locus of impact. Taken together, these findings suggest the 

possible differentiation of neuropsychological profiles of concussion along the boundaries of 

mechanisms of injury.  

Assessment of Mild Traumatic Brain Injury 
 
 Current recommendations for the assessment of concussion include a combination of 

self-report symptomology, neurocognitive testing, and balance testing (Collins et al., 2016; 

Guskiewicz, 2001; McCrory et al., 2017). In emergency room settings, CT scans and other 

imaging methods are often employed (Rose et al., 2017), with a mere 3.1 % of CT scans and 

1.5% of MRI scans revealing any abnormality. More recently, there has been a push to 

investigate potential biomarkers (Gatson & Diaz-Arrastia, 2014) and genetic factors (Terrell et 

al., 2008) related to concussion presentation, trajectory, and outcome. While these assessment 

and diagnostic methods generally perform well, there are significant shortcomings, including 

their ability to provide clinicians with information regarding prognosis, trajectory, treatment, and 

outcome. These limitations are partially due to the extreme heterogeneity in the presentation of 

concussions in nearly all domains. Concussions have historically been treated as one 
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homogeneous group, despite the staggering heterogeneity of clinical presentations. As a result of 

this mismatch between the observed variability and homogeneous management, improvement of 

prediction and management has been hindered. The assessment and presentation of concussions 

is discussed below to outline the extreme heterogeneity observed in this nebulous condition.  

Post-Concussion Symptoms 
 
 Mild TBIs generally produce a heterogeneous constellation of post-concussion symptoms 

(see Table 1). Various scales have been developed to assess post-concussion symptom reporting, 

typically including similar symptoms. Factor analyses have revealed somewhat consistent factor 

structures between these scales, generally yielding three to four factors. For example, structural 

analysis of the Rivermead Post-Concussion Symptom Questionnaire (RPSQ) yielded a three-

factor structure including: cognitive, somatic, and emotional symptom factors (Potter, Leigh, 

Wade, & Fleminger, 2006). A more recent factor analysis of the same measure also yielded a 

three-factor structure, albeit with divergent factors for: mood and cognition, general somatic, and 

visual somatic symptom factors (Hermann et al., 2009). It should be noted however, that the 

former study included mild and moderate injuries in their sample, while the latter included all 

severity of injuries. Furthermore, both studies were conducted in the post-acute to chronic stages 

of recovery, (1 year and 6 months, respectively; Piland, Motl, Guskiewicz, McCrea, & Ferrara, 

2006). A similar three-factor structure has been demonstrated for the Head Impact Scale (HIS) 

and the Graded Symptom Checklist (GSC; Piland, Motl, Ferrara, & Peterson, 2003). Both factor 

structures were encompassed by a single second-order concussion factor. 

The Post-Concussion Symptom Scale (PCSS) has somewhat consistently yielded a four-

factor solution at baseline and acutely post-concussion, including factors for: cognitive, 

emotional, physical, and sleep symptoms (Merritt & Arnett, 2014; Pardini et al., 2004). 
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However, a more recent factor analysis of the Post-Concussion Symptom Scale at baseline and 

acute post-concussion revealed a divergent factor structure (Kontos et al., 2012). At baseline, 

results indicated a four-factor solution including factors for: cognitive-sensory, sleep-arousal, 

vestibular-physical, and affective symptoms. A factor analysis of the PCSS following concussion 

also indicated a four-factor solution, albeit with different factors for: Cognitive-Fatigue-

Migraine, Affective, somatic, and sleep arousal symptoms (Kontos et al., 2012). The first factor 

accounted for most of the variance in the post-concussion sample, which the authors suggested 

could indicate a global concussion factor. However, methodological concerns in this study limit 

the conclusions that can be drawn from it. These limitations include the use of orthogonal, as 

opposed to oblique rotation, the criterion for number of factors to retain, and the retention of 

factors with only two variables (Preacher & MacCallum, 2003). Given these weaknesses, one 

cannot confidently assert that the “global concussion factor” in fact exists.  

The most recent factor analysis of the PCSS utilized the 19-item version and found a 

three-factor structure in athletes post-concussion. This study revealed factors for cognitive, 

somatic, and emotional symptoms of concussion (Joyce, Labelle, Carl, Lai, & Zelko, 2015). This 

factor structure was supported by a confirmatory factor analysis. Clearly, more research is 

needed in this area to reconcile the divergent findings. Regardless of the exact factors delineated 

to describe these concussion symptoms, three realities are evident regarding these symptoms: (1) 

they are heterogeneous, (2) patients experience them at staggeringly different rates, intensities, 

and durations, and (3) they are not specific to concussion. 

 The most commonly endorsed symptoms immediately following concussion are 

headache (78.5 to 85%), dizziness (51.2 to 78%), drowsiness (66.2%) feeling mentally foggy 

(62.3 to 70%), having poor concentration (65.8 to 70%) fatigue (69.2%) and feeling mentally 
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slowed down (66.9 to 68%; Lovell et al., 2006; McCrea, 2008). Despite the agreement on their 

use in the diagnosis of concussion, these symptoms are non-specific to this injury. There is 

evidence that these symptoms are common in various other conditions including chronic pain 

(Smith-Seemiller, Fow, Kant, & Franzen, 2003) and depression (Garden & Sullivan, 2010; 

Iverson, 2006b). Indeed, these symptoms are observed in healthy populations (Asken, Snyder, 

Smith, Zaremski, & Bauer, 2016; Garden & Sullivan, 2010; Iverson & Lange, 2003; Wang, 

Chan, & Deng, 2006), and athletes at baseline (Abeare et al., in preparation; Piland, Ferrara, 

Macciochi, Broglio, & Gould, 2010). Interestingly, up to 16% of athletes meet criteria for post-

concussion syndrome at baseline (Asken et al., 2017). Although superficially this seems to cast 

doubt on the validity of the PCS diagnosis, there are multiple possible explanations for this 

finding, including a sophisticated form of sandbagging (i.e. performing poorly on cognitive 

measures, reporting many symptoms, thus satisfying criteria for PCS). Although this is simply a 

hypothesis, it is supported by the high rates of invalid performance demonstrated in other studies 

discussed below. This provides further support for the assertion that multiple converging lines of 

evidence are necessary for a confident diagnosis of concussion. Furthermore, extant research 

demonstrates two clusters based on the temporal stability of post-concussion-like symptom 

reporting in healthy college students (Balasandaram, Athens, Schneiders, McCrory, & Sullivan, 

2016). The two clusters consist of stable reporters (i.e. the same number and severity of 

symptoms reported daily over a period of a week) and unstable reporters (i.e. rates of post-

concussion-like symptoms declined over the course of a week). The high rates of post-

concussion symptoms in healthy populations and other disorders combined with the instability in 

reporting, underscore the importance of multiple converging lines of evidence in the diagnosis of 

concussion, and the improvement of the methods with which we diagnose and describe it. 
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Cognitive Consequences of mTBI 
 
 As demonstrated above, mTBI is an extremely variable condition, which manifests in 

deficits in various cognitive, affective, behavioural, and vestibular domains. Karr, Areshenkoff, 

and Garcia-Barrera (2014) conducted a systematic review of meta-analyses on the topic, with the 

results corroborating the striking variability reported elsewhere. Regarding global abilities and 

general memory, these authors report ranges of effect sizes (Cohen’s d) of .24 to .81 and .35 to 

.78, respectively, with great variability in the size of the effect between the types of memory 

examined, and the largest effect size corresponding to learning verbal pairs. The effect size for 

verbal fluency (d=.77) was among the largest effects in any cognitive domain, as well.  

 Echemendia, Putukian, Mackin, Julian, and Shoss (2001) conducted a prospective study 

of the performance on neuropsychological tests of collegiate athletes who had sustained a 

concussion. After controlling for general intellectual ability, there were no differences at baseline 

on any of the measures between the control and concussed groups. However, two hours post-

injury, the concussed group performed significantly worse on all measures of working memory, 

attention, verbal learning and memory, and delayed memory. Similarly, at 48 hours post-

concussion, the concussed performed significantly worse than controls on measures of working 

memory, verbal learning and memory, divided attention, and speed of information processing. 

Interestingly, the injured athletes’ performance deteriorated on a test of verbal learning and 

memory between two hours and two days post-injury. At one week post injury, the control group 

continued to outperform the concussed group, although the differences did not reach statistical 

significance. Notably, there were differences between the control group and the concussed group 

on post-concussion symptoms endorsed at two hours post-injury, but they seemingly resolved 

prior to the evaluation at 48 hours post-injury. The authors emphasize the importance of this 
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finding given the lingering cognitive deficits present for up to seven days post-injury. So in 

addition to self-reported symptoms, cognitive deficits are variable following concussion.  

Affective Consequences of mTBI 

 The importance of considering affective consequences of mTBI has been gaining 

attention in recent years. Over three decades ago, Morgan (1980) outlined what is now 

considered the typical mood profile of a healthy, successful athlete, termed the “iceberg profile.” 

This profile comprises low tension, depression, anger, fatigue, and confusion scores, combined 

with high vigor (Mainwaring et al., 2012). Following concussion, some research has suggested 

that there is a reversal of this profile in which athletes demonstrate the opposite characteristics, 

commonly referred to as the “concussion crevice” (Mainwairing et al., 2012). A study conducted 

by Brewer, Linder, and Phelps (1995) demonstrated a divergent mood profile of athletes with 

physical as opposed to concussive injury. The difference in profiles between concussed and 

musculoskeletal injured athletes suggests that concussion is a special case regarding mechanisms 

of emotional dysfunction, beyond as a secondary reaction to removal from play.  

Previous research has demonstrated that concussed athletes demonstrate greater mood 

disturbance and higher levels of depression compared to non-injured controls (Mainwaring, & 

Hutchinson, Bisschop, Comper, & Richards, 2010), although those with ACL injuries report 

higher levels of depression symptoms for a longer duration than those with concussion. 

However, the concussed athletes reported overall mood disturbance, while those with ACL 

injuries did not. Other studies have revealed similar emotional deficits following mTBI (Dikmen, 

McLean, & Temkin, 1986; Levin et al., 1987). A study by Hutchinson, Mainwaring, Comper, 

Richards, & Bisschop (2009) demonstrated non-significant, but elevated, depressive symptom 

scores at two weeks post-injury.  
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Regarding recovery of emotional symptoms, it appears that they might follow a similar 

trajectory to cognitive deficits following concussion (Mainwaring et al., 2012). A similar study 

conducted by Hutchinson et al. (2016) demonstrated elevated tension, depression, anger, and 

confusion, and diminished vigor and self-esteem in the acute stage of recovery following 

concussion. The researchers followed up with the athletes at two subsequent time points: 

following symptom resolution, and following medical clearance for return to play. Following 

symptom resolution, mood scores were comparable to those of the control group. Previous 

research has suggested that these emotional disturbances can last up to 3 weeks (Mainwaring et 

al., 2004). After clearance for RTP, however, concussed athletes had lower depression and 

fatigue scores and better sleep quality, compared to the control group, suggesting some kind of 

rebound effect (Hutchinson et al., 2016). Taken together, these findings indicate that concussion 

typically results in some, typically transient, emotional dysfunction.  

Balance Data in Concussion Assessment  

 It is now widely accepted that balance data should be included in the assessment of sport-

related concussion (McCrory et al., 2017). The NCAA Concussion Study, conducted by McCrea 

et al. (2003) demonstrated substantial impairment in postural stability, measured by the Balance 

Error Scoring System (BESS), in a large sample of concussed collegiate athletes. These balance 

disturbances followed a similar trajectory of recovery to cognitive deficits and symptomology, 

recovering within 3 to 5 days. In fact, some studies have demonstrated that balance data may 

have incremental clinical utility to other forms of evaluation (cognitive and symptomology) in 

that it can detect abnormal balance, even following the resolution of cognitive deficits and self-

reported symptoms (Howell, Osternig, & Chou, 2018). Various methods of measuring balance in 

the context of concussion assessment have emerged, ranging from rudimentary visual sideline 
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evaluations to relatively sophisticated balance-plate measurement of total sway of the centre of 

gravity. These have already been shown to be useful in the evaluation of concussion, and this is a 

burgeoning area of research in the concussion domain.  

Impression Management in Sports-Related Concussion  

 Another factor to consider in the assessment of post-concussion symptoms is the degree 

to which athletes accurately report their symptoms. Because self-reported symptom inventories 

are inherently subjective, there is great potential for inaccuracy. There are various reasons this 

might be so, ranging from poor insight to deliberate deception. That is, individual differences in 

perceptions of bodily sensations and proprioception could lead to discrepant reports of symptoms 

despite no “actual” difference in the underlying pathophysiology. Because there is no way to 

objectively determine the extent to which these symptoms are experienced, there is room for 

error.  

A second reason at the opposite end of the spectrum in terms of intent, is deliberate 

impression management, be it positive or negative. Athletes are generally very motivated to 

return to play, and thus often underreport symptoms to create the façade that they are recovered. 

This underreporting of symptoms motivated by eagerness to return to play is well-documented in 

the literature (Kroshus, Garnett, Hawrilenko, Baugh, & Calzo, 2015; Meier et al., 2015; 

Williamson & Goodman, 2006). Athletes who underreport symptoms, however, would 

presumably still demonstrate impairment in the cognitive and vestibular domains, representing a 

unique profile of scores on post-concussion testing. Similarly, there is a culture in sports to 

“shake it off.” That is, athletes who experience this pressure might underreport symptoms to 

conform to the cultural pressures (Kroshus et al., 2015).  
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 Some of these ideas additionally pertain to baseline testing, except the motivation is in 

the opposite direction. That is, at baseline, athletes will often under-perform on the cognitive 

measures (referred to as “sandbagging”) to lower the bar for recovery in the event of a 

subsequent concussion. That is, they engage in negative impression management, and do not 

perform to their highest potential. This would result in a profile of scores reflecting high 

symptoms and lower cognitive performance at baseline.  

There is a burgeoning literature on the assessment of performance and symptom validity 

in mTBI at baseline and post-injury. The ImPACT includes some embedded validity indicators 

(Lovell, 2011), but they generally do not perform well (Abeare, Messa, Zuccato, Merker, & 

Erdodi, 2018). There have been third-party attempts to develop logistic regression equations and 

other embedded indicators for the ImPACT, demonstrating high rates of invalid performance 

(Abeare et al., 2018). It has additionally been shown that common stand-alone validity indicators 

might be useful in the assessment of performance validity in athletes (Abeare et al., submitted), 

demonstrating that up to approximately 50% of athletes fail at least one performance validity test 

(PVT). Although this is below accepted forensic standards of failing two or more PVTs (Boone, 

2013), it suggests a striking need for validity assessment in baseline and post-concussion 

assessment. It is possible that profiles reflecting the under- or over-reporting of symptoms or 

feigning of cognitive weaknesses could be shown through the delineation of subgroups of 

concussions based on symptoms and cognitive performance. Indeed, Morin and Axelrod (2017) 

delineated a four-cluster structure of a Veterans Affairs sample of veterans who underwent 

neuropsychological assessment, with performance and symptom validity status emerging as 

important variables in the delineation of these subgroups. A similar structure is expected to 

emerge in this study.  
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Sex and Gender Differences in the Effects of Concussion 

 It is widely recognized that increased research is needed into the differential experiences 

of females with concussion. The studies that have examined gender differences in the effects of 

concussion have found that females may be more likely to incur a concussion (Covassin, Swanik, 

& Sachs, 2003; Dick, 2009; Gessel, Fields, Collins, Dick, & Comstock, 2007), may experience 

worse outcomes compared to their male counterparts, and may take longer to return to play 

following a concussion (Stone, Lee, Garrison, Blueitt, & Creed, 2017). Females exhibit more 

substantial deficits in reaction time and visual memory, report more post-concussion symptoms, 

and are 1.7 times more likely than males to be cognitively impaired following concussion 

(Broshek et al., 2005; Covassin, Elbin, Harris, Parker, & Kontos, 2012; Covassin, Schatz, & 

Swanik, 2007; Lovell et al., 2006). Furthermore, extant research demonstrates differences at the 

individual symptom level such that men are more likely to endorse vomiting, sadness, 

confusion/disorientation, and amnesia. Conversely, females are more likely to report drowsiness 

and sensitivity to noise (Covassin et al., 2007; Frommer et al., 2011). Indeed, there are even 

differences observed at baseline between males and females such that males perform better on 

measures of visual memory, and females perform better on measures of verbal memory. Some 

research suggests that females might report more symptoms at baseline (Covassin et al., 2006; 

2010;  Lovell et al., 2006), while other studies find no difference (Garden & Sullivan, 2010). It is 

possible that these trends of females experiencing greater deficits following concussion are a 

artifact of the difference in athletic culture between male and female sports, namely that males 

are more under more pressure to “Shake it off” and are thus more likely to underreport symptoms 

following concussion. Furthermore, males may be more likely to sandbag their baseline tests, 

resulting in a diminished disparity between their baseline and post-concussion cognitive scores, 
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resulting in the illusion that they are less affected than females. This topic requires much further 

investigation. Interestingly, Asken et al. (2017) found that women are 1.7 times more likely to 

meet criteria for PCS at baseline compared to men, supporting the assertion mentioned above 

that men may simply underreport symptoms. Increased research is needed in this area to help to 

explain the mixed findings. Despite these mixed findings, some research suggests that females 

are more likely to continue to report post-concussion symptoms at three months post-injury 

(Bazarian, Blyth, Mookerjee, He, & McDermott, 2010). 

 It has been proposed that at least part of the reason for these sex differences are 

differences in the levels of the hormones estrogen and progesterone between males and females 

(Brown, Elsass, Miller, Reed, & Reneker, 2015). Several studies have provided indirect evidence 

for this hypothesis. For example, Bazarian et al. (2010) showed that while women seem to report 

more post-concussion symptoms following concussion at all stages of life, this effect is 

particularly prominent during the childbearing years, when these hormones are in a state of 

relative flux. Furthermore, extant research shows that women currently consuming oral 

contraceptives, which regulate these hormones, tend to report fewer and less severe post-

concussion symptoms (Mihalik, Ondrak, Guskiewicz, & McMurray, 2009). This study also 

demonstrated no difference across the menstrual cycle in eumenorrheic women. Although it is 

contrary to the previous study, some studies have shown symptom reports to vary across the 

menstrual cycle (Ross, Coleman, & Stojanovska, 2003). For example, Malleck and Abeare (in 

preparation) demonstrated that fluctuations in menstrual hormones in healthy female university 

students tend to affect the nature of their post-concussion symptoms, rather than the severity. No 

research to date has examined the experiences of members of the transgender or non-binary 

communities with concussion. Taken together, these findings suggest that perhaps males and 
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females might react differently to concussion, and thus exhibit different profiles of symptoms 

and deficits. 

Recovery from mTBI 
 
 Recovery from mTBI is often divided into three consecutive stages: acute, sub-acute, and 

chronic (Barr, 2014). The acute phase is characterized by transient neurophysiological 

disruption, resulting in symptomology and neurocognitive dysfunction. This dysfunction 

typically resolves within 7-10 days. The sub-acute stage involves a period of continued brain 

recovery, typically observable only through advanced neuroimaging such as Diffusion Tensor 

Imaging (DTI) and functional magnetic resonance imaging (fMRI; Jantzen, Anderson, Steinberg, 

& Kelso, 2004). This stage can last several weeks, up to three months. The chronic stage is 

characterized by persistent symptoms beyond three months, and patients falling in this category 

reflect post-concussion syndrome (Lishman, 1988; Ryan & Warden 2003). This is discussed in a 

later section.   

As discussed above, assessment of self-report symptomology is one component of the 

recommended protocol for the diagnosis of concussion. These symptoms are most prevalent and 

severe immediately following injury, and demonstrate improvement within two hours continuing 

in the following days (McCrea, 2008). In fact, 21% of patients seem to report full symptom 

recovery within 1 day, 64% between 1 and 7 days, 11% between 8 days and one month, with 

only about 3% experiencing symptoms beyond one month (McCrea, 2008). However, there is 

variability depending on several factors, including age. That is, younger people tend to have 

more prolonged and variable recovery times (Williams, Puetz, Giza, & Broglio, 2015). 

Recovery of cognitive dysfunction following mTBI has been shown to follow a similar 

course to symptomology. That is, mTBI patients’ cognitive functioning recovers rapidly and, it 
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would seem, completely (McCrea, 2008). Iverson, Brooks, Collins, & Lovell (2006) 

demonstrated impairment one day following concussion on verbal and visual memory. However, 

these two categories of memory appeared to recover at differing rates, with verbal memory 

remaining impaired at five, but not ten days post-injury, and visual memory exhibiting clinically 

significant change (i.e. no longer in the impaired range) by five days post-injury. Similarly, there 

was impairment at one day post-injury on processing speed and reaction time, with only reaction 

time remaining in the impaired range at five days. Consistently, mTBI-induced cognitive deficits 

have been shown to be very small at three months, and non-existent at one year (McCrea, 2008). 

Several meta-analyses have supported similar conclusions (Belanger, Curtiss, Demery, 

Lebowitz, & Vangerploeg, 2005; Frencham, Fox, & Maybery, 2005; Schretlen & Shapiro, 2003). 

Given that concussion falls at the mild end of the spectrum of mTBI, and that athletes tend to be 

healthier and may have other protective attributes, it should be no surprise that the recovery time 

appears to be much shorter. More specifically, athletes have been shown to recover cognitively 

within five to seven days (Iverson, 2006a; McClincy, Lovell Pardini, Collins, & Spore, 2006; 

Williams, Puetz, Giza, & Broglio, 2015), although their initial cognitive deficits have been 

shown to be comparable to those in other etiological categories of mTBI (Belanger & 

Vanderploeg, 2005). Similarly, balance scores tend to recover within three to five days (McCrea 

et al., 2003), although they may persist longer with more sensitive measures, given the evidence 

discussed above that balance deficits can be clinically useful in detecting lingering effects of the 

concussion, even following the resolution of cognitive deficits and symptoms (Howell, Osternig, 

& Chou, 2018).  

Prediction of Recovery from Concussion 
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There is a burgeoning literature on the prediction of outcomes following concussion. 

Several studies have identified pre-and post-injury predictors of outcome following concussion. 

Merrit & Arnett (2014) demonstrated that physical and affective symptoms at baseline predicted 

athletes’ classification into groups based on high and low levels of post-concussion symptoms, 

such that higher endorsement of affective symptoms increased the likelihood that athletes would 

be classified in the high post-concussion symptom group, and higher levels of physical 

symptoms at baseline reduced the likelihood of being in the high post-concussion symptom 

group. Collins and colleagues (2003) additionally showed that self-reported post-traumatic 

headache corresponded to poorer reaction time and memory scores. 

 Predictors of prolonged post-concussion recovery times include: low premorbid 

resilience and depressed mood (McCauley et al., 2013), being female, (Merritt & Arnett, 2014), 

poor sleep (Sullivan, Berndt, Edmed, Smith, & Allan, 2016), age (Field, Collins, Lovell, & 

Maroon, 2003), dizziness at time of injury (Lau, Kontos, Collins, Mucha, & Lovell, 2011), 

moderate to severe pain at time of injury, poor performance on emergency room tests of 

immediate and delayed recall, headache severity (Faux, Cheedy, Delaney, & Riopelle, 2011), 

premorbid physical and mental health status (McLean et al., 2009), and premorbid emotional 

function (Vargas, Rabinowitz, Meyer, & Arnett, 2015), among others. Despite the multitude of 

variables that have been identified to be predictive of concussion recovery time, the ability of 

clinicians to forecast those most at risk for protracted recovery is weak, at best. If more 

homogeneous subgroups can be delineated, the ability of the clinician to identify and target for 

intervention, those most at risk for poor outcome could be improved.  

This approach has been investigated by Lau, Collins, and Lovell (2011a; 2011b; Lau, 

Lovell, Collins, & Pardini, 2009). These authors investigated the prognostic utility of total post-
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concussion symptom score, as well as four symptoms clusters (migraine, cognitive, sleep, and 

neuropsychiatric) and four cognitive scores (verbal memory, visual memory, processing speed, 

and reaction time). These metrics were able to predict, with good sensitivity, specificity, and 

positive and negative predictive power, whether athletes would fall into one of two dichotomous 

groups: normal or prolonged recovery. These authors later developed cut-off scores for each of 

these clusters and demonstrated their predictive ability (Lau, Collins, & Lovell, 2011a; 2011b). 

These symptom and cognitive clusters demonstrated incremental utility above and beyond they 

typical ImPACT scoring system.  

Post-Concussion Syndrome 
 

It is generally agreed that the large preponderance of concussions, approximately 80-

90%, will recover fully within 7 to 10 days (Collins et al., 2016; McCrory et al., 2017), with 

some variation between age groups and level of play (Field et al., 2003; Williams et al., 2015). 

Specifically, Williams et al. (2015) conducted a meta-analysis of concussion recovery times in 

high school and collegiate athletes and found that high school athletes tend to recover 

symptomatically within 16 days and cognitively within 7 days. Conversely, collegiate athletes 

tend to recover symptomatically within 5 days and cognitively within 7 days. So, it appears that 

younger athletes’ recovery times are considerably longer and more variable. While most 

concussions recover within this timeframe, there is a small minority who experience prolonged, 

and occasionally indefinite, symptoms. This condition has been coined Post-Concussion 

Syndrome (PCS; Bigler, 2008; Lishman, 1988; Ryan, 2003), and its sufferers, “the miserable 

minority” (Wood, 2004).  

 Estimates of the prevalence of this condition range from 3% to 15% (McCrea, 2008; 

Alexander, 1995). The former is more likely to be closer to the true incidence because of 
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methodological concerns in studies with higher estimates. Both the International Classification of 

Diseases 10th edition (ICD-10; World Health Organization, 1992) and the Diagnostic and 

Statistical Manual of Mental Disorders 4th edition (DSM IV; American Psychiatric Association, 

2000) have criteria that must be met for one to qualify for this diagnosis, but Post-Concussion 

Syndrome was not included in DSM-5 (APA, 2013). There has been a surge of research aimed at 

identifying those most at risk for protracted recovery, discussed above.   

 There are several theories in the literature pertaining to the etiological mechanisms of 

PCS, and a short discussion will be presented here. Lishman (1988) conducted the seminal work 

on PCS, postulating that neurobiological factors predominate the acute presentation of 

concussion, but there is a temporally-driven shift to primarily psychogenic propagation of the 

experience of symptoms in the sub-acute and chronic stages. Silverberg and Iverson (2011) 

conducted a systematic review of the literature to examine the predictions of Lishman’s model. 

These authors report that there is a reciprocal causal relationship between acute emotional and 

post-concussion symptoms. They additionally confirm the link between emotional distress and 

PCS in the chronic stage of concussion recovery. The authors were unable to come to any 

conclusion regarding two of the predictions of Lishman’s model: (1) that psychological distress 

should increase over time in those who do not recover, and (2) that the relationship between 

emotional distress and post-concussion symptoms should increase over time. The results of this 

study underscore the paucity of well-designed research in this area. Despite this, several theories 

in addition to Lishman’s have been proposed regarding the etiological mechanisms of PCS.  

Mittenberg, Digiulio, Perrin, and Bass (1992) proposed a theory implicating expectation 

as an etiological mechanism in PCS. These authors posit that patients in the chronic stage might 

continue to erroneously attribute symptoms to the head injury, when they are common in the 
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healthy population. Evidence for this hypothesis is provided by the finding that post-concussion 

symptoms are common in healthy populations (Asken, Snyder, Smith, Zaremski, & Bauer, 2016; 

Garden & Sullivan, 2010; Iverson & Lange, 2003; Wang, Chan, & Deng, 2006), and athletes at 

baseline (Abeare et al., in preparation; Piland, Ferrara, Macciochi, Broglio, & Gould, 2010). In 

the original paper, Mittenberg et al (1992) asked healthy lay people to report their current 

symptom levels, and then imagine that they have had a brain injury and report what they would 

expect to experience at 6 months post-injury. The symptom profile described mapped well onto 

the reports of PCS in the literature.  

 Another proposed etiological mechanism of PCS, called “the good old days hypothesis,” 

was propounded by Gunstad and Suhr (2001). Their theory postulates that individuals tend to 

report fewer symptoms and better functioning in the past as opposed to the present. This theory 

is very similar to the expectation as etiology theory, except that the good old days hypothesis is 

more broad in that it postulates that following any negative event, not only head injury, 

individuals tend to attribute symptoms to that event. Other explanations include a general nocebo 

effect (McCrea, 2008), in which expectations of illness or being unwell causes symptoms to 

appear, and the stress-diathesis hypothesis (Wood, 2004), which integrates physiological, 

cognitive, and psychological variables in the explanation of PCS. The basis of this model is that 

there is a predisposition to PCS, and that stressors during the recovery process can bring out this 

predisposition. Despite these efforts, more research is needed regarding the etiology of PCS, and 

thus its prediction remains problematic. If more homogeneous subgroups can be delineated, this 

could lead to improved ability to identify those most at risk for PCS and target them for early 

intervention aimed at prevention.  

Repeated mTBI 
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 Concern over the long-term effects of repeated concussion has prompted a burgeoning 

literature regarding the effects of multiple mTBIs. Findings are mixed regarding the cumulative 

effects of multiple mTBIs. Karr et al. (2014) report that effect sizes for cognitive deficits 

following concussion are generally larger when participants with a history of mTBI are included 

in the analyses as opposed to when they are excluded, although the effect sizes are small. Indeed, 

there is some evidence for a dose-response gradient for worsened baseline neurocognitive 

performance beginning with a history of two concussions (Covassin, Elbin, Kontos, & Larson, 

2010). That is, those with a history of three previous concussions would exhibit more significant 

cognitive deficits than those with two, and so forth, although some studies have found an effect 

of one previous concussion (Colvin et al., 2009).  

Consistently, Iverson, Gaetz, Lovell, & Collins (2004) demonstrated that athletes with a 

history of multiple concussions are 7.7 times more likely to exhibit a substantial drop in memory 

performance following concussion than those with no history. Similarly, extant research 

demonstrates that athletes with a history of multiple concussions take longer to recover verbal 

memory and reaction time as well as migraine, cognitive, fatigue symptoms than those with no 

history of concussion (Covassin, Moran, & Wilhelm, 2013; Covassin, Stearne, & Elbin, 2008).  

Regarding on-field characteristics of concussion, Collins and colleagues (2002) showed that high 

school athletes with a history of three or more concussions are more likely to experience loss of 

consciousness, anterograde amnesia, and confusion following a subsequent concussion. In fact, 

they were 9.3 times more likely to exhibit three out of four indicators of more severe concussion.   

Furthermore, previous research suggests that athletes with a history of concussion 

experience a higher number and more severe post-concussion symptoms at baseline (Gaetz, 

Goodman, & Weinberg, 2000; Piland et al., 2010), and display a delayed P300 (event-related 
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potential that is responsive to unexpected stimuli) compared to athletes with no history of 

concussion (Gaetz, Goodman, & Weinberg, 2000). Other studies have found no difference in 

neurocognitive performance or symptom reporting based on previous concussion history (Collie, 

McCrory, & Makdissi, 2006; Iverson, Brooks, Lovell, & Collins, 2006; Tsushima, Geling, 

Arnold, & Oshiro, 2016). Although evidence is incomplete (Carson, 2017), some studies have 

linked repeated concussion to early onset of dementia in the form of Chronic Traumatic 

Encephalopathy (CTE; Gardner & Yaffe, 2015). Some research has also demonstrated a higher 

risk of major depression (Guskiewicz, et al., 2007).  

Along a similar vein, researchers have investigated the effect of sub-concussive hits on 

neurocognitive performance and symptom reporting. Although this literature is in its nascent 

stages, studies generally agree that if there is an effect, it is likely small (Belanger, Vanderploeg, 

& McAllister, 2016; Chrisman et al., 2016). Taken together, these findings suggest that athletes 

with a significant history of past concussions might present divergent neuropsychological and 

symptom profiles in the acute stages of the injury.  

Subtypes of Concussion 
 
 Concussion is one of the most controversial topics in neuropsychology. One reason for 

this controversy is its extremely variable acute and chronic presentation. Despite this 

staggeringly heterogeneous presentation, it has historically been diagnosed and managed as a 

homogeneous condition. Several lines of evidence discussed above suggest possible 

differentiation of subgroups of concussion. First, different types of forces acting on the brain 

could result in different injury characteristics. Furthermore, there could be differences in injury 

characteristics based on direct vs. inertial forces on the brain. Moreover, it is possible that the 

loci of the impact could result in further differentiation. Further, emotional dysfunction may 
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underlie many of the symptoms such that people who are more anxious may be more aware of 

their symptoms or attribute pre-existing symptoms to the concussion. Similarly, because of the 

increased motivation to return to play, athletes might under-report symptoms post-concussion, 

resulting in a disjunction between cognitive deficits and symptoms.  

 For the reason discussed above, several researchers have made attempts to uncover more 

homogeneous subgroups within concussion. The earliest of these attempts of which I am aware 

was a thesis by Brian Mainland (2010). This researcher applied cluster analysis to a population 

of mTBI patients who had undergone a comprehensive neuropsychological evaluation. Two 

separate clusters were identified in each of the following cognitive domains: intelligence (based 

on WASI performance), memory (based on Logical Memory, CVLT-II, and Rey Complex 

Figure Test), Fluency (based on Controlled Oral Word Association Test and Ruff Figural 

Fluency Test), and cognitive flexibility and attention (based on Trail Making Test A and B, and 

Short Booklet Category test). This study also examined how demographic and comorbid 

psychiatric conditions affect group membership, finding that some of these variables contributed 

to membership.  

 A more recent investigation of this question came from Collins and colleagues (2014). In 

a conceptual paper, these authors outlined a comprehensive approach to the management of 

concussion including clinical “trajectories” of concussion, equipped with management and 

treatment recommendations for each. These authors assert (citing Kontos et al., 2012) that 

initially patients with concussion all conform to a global concussion symptom factor including 

cognitive deficits, fatigue, and migraine, but diverge after seven days into discrete trajectories. 

The authors outline six trajectories including: cognitive, vestibular, ocular-motor, post-traumatic 

migraine, cervical, and anxiety/mood. These trajectories will be discussed here. The cognitive 
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trajectory refers to patients with symptoms including fatigue, decreased energy levels, headache, 

and sleep disruption. The vestibular trajectory constitutes patients who experience “dizziness, 

fogginess, nausea, a feeling of being detached, anxiety, and overstimulation in more complex 

environments” (p. 241). The Ocular-motor trajectory reflects patients who experience “localized, 

frontally based headaches, fatigue, distractibility, difficulties with visually based classes, 

pressure behind the eyes, and difficulties with focus” (p. 241). The anxiety/mood trajectory 

includes patients who experience “anxiety, including ruminative thoughts, hypervigilance, 

feelings of being overwhelmed, sadness, and/or hopelessness” (p. 242). The post-traumatic 

migraine trajectory refers to patients who experience intermittent migraine following concussion. 

Lastly, the cervical trajectory reflects patients who do not fit into the other trajectories and report 

neck pain and headache. These clinical trajectories might assist the clinician in predicting 

outcomes and developing treatments that cater to the individual needs of each patient, consistent 

with the individualized nature of this injury.  

 Consistent with the previous study, Ellis, Leddy, and Willer (2015) proposed a 

framework for creating more homogeneous post-concussion disorders (PCD) to supplant the 

currently nebulous conceptualization of PCS. Three PCDs in total were delineated, including: 

physiologic, vestibulo-ocular, and cervicogenic. All three PCDs are characterized by persistent 

post-concussion symptoms, but differ on the causes of these protracted symptoms. The 

physiologic, vestibular-ocular, and cervicogenic PCDs attribute the prolonged recovery to 

impaired cerebral metabolism, impaired vestibulo-ocular system, and dysfunction of the spinal 

somatosensory system, respectively. These authors call for individualized treatment of PCDs 

based on group membership.  
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As shown by these studies, there is great potential for the delineation of more 

homogeneous subgroups of concussions. The implications of such work are vast. Firstly, 

regarding diagnosis, delineating more homogeneous subgroups would increase diagnostic 

accuracy and agreement. Regarding acute management of concussion, the various subgroups 

may require unique immediate treatment to optimize recovery. In this stage, the classification of 

patients into relatively homogeneous groups could provide clinicians with a method of 

identifying those most at risk for poor recovery and outcome and allow for early intervention to 

circumvent these issues. The delineation of subgroups could allow for the development of 

treatments tailored to these specific groups leading to quicker recovery and return to play, along 

with lower rates of prolonged recovery. These advantages in the early stages could ultimately 

improve trajectory of recovery, and outcome.  

The purpose of the current study will be to attempt to empirically derive 

neuropsychological subgroups of concussion from neurocognitive data and self-report 

symptomology. Based on previous work, I propound two expectations for the outcomes of this 

study. First, I expect that subgroups will emerge from the data. Second, I expect that, similarly to 

the study by Morin and Axelrod (2017) discussed above, at least one cluster along the boundaries 

of impression management will emerge. Despite ample reasons to predict subtypes will emerge, 

specific hypotheses are not warranted given the paucity of previous work in this area and the 

exploratory nature of this study.  

CHAPTER 2:  

METHODS 

Participants 
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This study utilized archival data collected during baseline and post-concussion 

assessments. Participants were a consecutive case series comprised of 1366 athletes (872 male, 

494 female; Mage=15.6, SDage=1.9). Athletes <10 or >24 years of age were excluded. This 

criterion excluded 22 participants, so the sample used in this study accounted for 98.4% of the 

total sample of post-concussion assessments. The former criterion is in place because the 

ImPACT is normed for children 10 years and older (Lovell, 2011), and thus would not represent 

a valid assessment of younger children. The latter criterion is in place given that those aged 25 

and over represent a neurodevelopmentally distinct category. Mean education of the sample was 

9.1 (SD=1.7), and the average number of previous concussions was 0.9 (SD=1.0). Participants 

are primarily English-speaking (99.6%), and dextral (87.2%).  

The acute sample (time since injury ≤7 days) consisted of 330 post-concussion athletes 

(226 male, 104 female; Mage=15.6, SDage=1.9). The same exclusion criteria listed above, in 

addition to the additional inclusion criterion of time since injury were applied to this sample. The 

mean education of this sample was 9.3 years (SD=1.8), and the average number of previous 

concussions is 1.0. Participants were primarily English-speaking (99.6%) and dextral (88.6%).  

Procedure 

 Data consist of a consecutive series of baseline and post-concussion assessments between 

the years of 2007 and 2016 at Henry Ford Hospital in Detroit, Michigan. Baseline assessments 

were administered in a group setting with approximately 20 athletes per group. These sessions 

were supervised by either a registered neuropsychologist or an athletic trainer. Post-concussion 

assessments were conducted on an individual basis after athletes were suspected of having 

sustained a concussion. Post-concussion assessments were supervised by either a 

neuropsychologist, an athletic trainer, or a sports-medicine physician. In addition to the 
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ImPACT, balance testing and a neurological exam were administered at post-concussion. All 

guidelines pertaining to the ethical treatment of human participants in research were followed. 

This project was approved by the institutional research Board (IRB) at site of data collection, as 

well as the Research Ethics Board (REB) at the site of study.  

Measure 
 
 The Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT; Lovell, 

2011) is an online neurocognitive measure designed to assess concussion. The measure consists 

of the 22-item self-report PCSS, and five performance-based cognitive indexes for: Visual and 

Verbal Memory, Reaction Time, Visuo-Motor Speed, and Impulse Control. The PCSS 

demonstrates good internal consistency (a=.88 -.94) across age and gender and at baseline and 

post-concussion (Lovell et al., 2006). Test re-test reliabilities for the cognitive scales ranges from 

r=.45 (verbal memory composite) to r=.76 (Visuomotor Composite; Bruce, Echemendia, 

Meeuwisse, Comper, & Sisco, 2014). Maerlender et al. (2010) investigated the construct validity 

of the ImPACT by comparing it to a battery of standard neuropsychological tests. These authors 

showed that at least two scores from each of the ImPACT indexes except impulse control were 

related to standard neuropsychological tests in the same or similar domains (r=-.31 to .59). A 

factor analysis of the ImPACT in a non-concussed healthy sample supported a five-factor 

solution, but did not support the test’s particular index structure (Allen & Gfeller, 2011). The 

same study found correlations between ImPACT scores and standard neuropsychological tests of 

r=-.39 to 0.49. Schatz, Pardini, Lovell, Collins, and Podell (2006) demonstrated significant 

differences between concussed and non-concussed athletes on all indexes included in the 

ImPACT. In this study, 82% of concussed athletes were correctly classified, compared to 89% of 

non-concussed athletes, with an overall classification accuracy of 85.5%.  
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Data Analysis 
 

Latent Gold version 5.1 was used to conduct an exploratory latent class analysis (LCA) to 

identify latent groups underlying the data. This analysis is also known as Model-Based 

Clustering, Mixture Likelihood Approach to Clustering, mixture model clustering, probabilistic 

clustering, Bayesian Classification, Unsupervised Learning, and Latent Class Cluster Analysis 

(Hagenaars & McCutcheon, 2002). This technique is similar to conventional cluster analysis in 

its result, but the process is very different. That is, LCA assumes an underlying latent categorical 

variable, consisting of multiple probability distributions, that describe the clusters identified in 

the analysis. This technique clusters based on probability. In other words, it is a top-down 

approach, in which a model (see figure 1) is imposed on the data, and where parameter estimates 

are developed to maximally explain the covariation between the variables and cases. The degree 

that the model fits the data is then tested, to determine if it is an adequate explanation for the 

data. An advantage of this procedure is that it has more objective criteria for the number of 

classes and model fit (Akaike Information Criterion, Bayesian Information Criterion, Sample-

Adjusted Bayesian Information Criterion, percent correctly classified, entropy R2). While LCA 

does have advantages over conventional cluster analysis, there are strengths of conventional 

cluster analysis as well, such as its versatility, that a model does not need to be specified a priori, 

and that it is not technically a statistical technique, so it is not beholden to statistical assumptions 

in the same way as some techniques.  

Various fit statistics are available in LCA, as mentioned above. First, Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), Sample-Adjusted Bayesian Information 

Criterion (SABIC), and Approximate Weight of Evidence (AWE) are all fit indices that take into 

account the amount of information lost in the data reduction process, as well as the parsimony of 



www.manaraa.com

 

	 	 35	

the solution. AWE additionally considers classification accuracy. To interpret these indices, one 

should look for the point in the series of cluster solutions when the value reaches its lowest point 

and the value starts to increase again. Entropy R2 (herein referred to as entropy) is another fit 

index in LCA. This is a measure that captures the overall classification accuracy of the models 

across all of the clusters. In this case, the higher the value (closer to 1.0), the better fit the model 

is for the data. Lastly, the proportion of total Bivariate Residuals (BVRs) above the cutoff point 

of 3.84 (chi square distribution; p=.01) was used as a fit index. In this case, if there are BVRs 

above the cutoff point, it indicates that the model is not adequately accounting for the association 

between those two variables, resulting in local dependence. So, models were considered to meet 

minimum requirements when the BVRs greater than the cutoff were at 0%.  

Latent class analysis, controlling for time since injury, was applied to data from the 

ImPACT, five cognitive variables (visual and verbal memory, reaction time, visuomotor speed, 

impulse control) and four symptom clusters (cognitive, migraine, sleep, neuropsychiatric; see 

Table 1), obtained from concussed athletes to delineate subgroups. The symptom cluster scores 

were computed as sums of the ratings of their constituent items from the PCSS. The primary 

analysis was conducted on the overall sample of athletes who met inclusion criteria. Follow-up 

analyses included analysis of cognitive and symptom variables separately. These analyses were 

repeated in a sample of only athletes in the acute stage (≤7 days) of recovery.  

Data Screening. Data were examined for missing values. There were missing values for 

education, years playing the sport, number of previous concussions, and time since injury. The 

number of values missing for each of these variables were 25, 287, 250, and 542, respectively. 

These missing values are an inevitability in retrospective clinical data due to participants simply 

not entering values. While it is not ideal to have this many missing values, the analyses were 
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computed because these are the best data available to the current study. Cases with missing data 

were included in the analysis, given LCA’s ability to handle missing cases (Madgison, 2017). 

Assumptions. Latent Class Analysis does not have explicit assumptions in the manner 

that many other statistical techniques do. For example, it is not required that the data conform to 

a normal distribution because the assumption of LCA is that there are multiple distributions 

underlying the manifest one, with each corresponding to a different latent class. The common 

assumptions, such as independence of observations, and multicollinearity do apply here, and are 

met. Each athlete’s testing was conducted individually, so the observations are independent of 

one another, and examination of a bivariate correlation table reveals that there are no two 

variables so highly correlated so as to introduce an issue. One assumption that is specific to LCA 

is local independence. That is, following the analysis, the variables will be independent of one 

another within the classes because the model will account for the relations between them. This 

assumption can be relaxed by allowing direct paths between variables that would theoretically be 

expected to correlate even after the model is applied, and this method was used in the current 

analyses. The procedure is described below, since it was an iterative procedure, occurring after 

the first round of analyses revealed unacceptably high bivariate residuals among theoretically 

defensible associations. Lastly, no outliers were removed from the data because of the second 

expected outcome, that a performance validity cluster would emerge. Invalid 

performance/reporting is often detected by examining data for unfeasible patterns of 

performance/reporting. Thus, to remove outliers might have removed interesting cases that could 

fall into this cluster.  

Specifications. Variables selected as indicators were the five cognitive variables (visual 

and verbal memory, reaction time, visuomotor speed, and impulse control) as well as the four 
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symptom clusters (migraine, cognitive, sleep, and neuropsychiatric symptoms; see Table 1). All 

of these were treated as continuous variables. Latent gold allows for the inclusion of active and 

inactive covariates. Active covariates are taken into account in the estimation of the model, while 

inactive covariates are simply used to characterize the resultant clusters, post hoc. The only 

variable included as an active covariate was time since injury, while inactive variables included 

age, gender, education, ADHD, Dyslexia, Autism, number of years playing the sport, number of 

previous concussions, and total symptoms. Time since injury was included as an active covariate 

because this is considered to be an important variable in concussion because of the very quick 

recovery from concussion. In terms of model specification, there is an option to include direct 

effects between indicators, if they are expected, based on theory, to still be associated even after 

the model is applied. This option was not used in the first iteration, but was used in later 

iterations based on the magnitude of bivariate residuals (BVRs; residual association between two 

variables after application of the model), and theoretical considerations (i.e. does it make sense 

that these two variables would still be associated?). Large-magnitude BVRs (>15.0) emerged for 

the associations between the migraine and cognitive symptom clusters, as well as between the 

visual and verbal memory cognitive scores, and the reaction time and visuomotor speed 

cognitive scores. Direct paths were included in the model between these variables for all further 

analyses. There were other lower magnitude (although still above the acceptable cutoff of 3.84; 

e.g. between VMS and migraine cluster, etc.) BVRs that were less theoretically defensible. 

Furthermore, given that these BVRs were closer to the acceptable level, the inclusion of more 

latent classes or clusters in the tested models would reduce these to within acceptable levels, in 

most cases. For these reasons, direct paths were not included between the remainder of the 

variables with BVRs above 3.84.  
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CHAPTER 3: 

RESULTS 

Overall Sample 

 The fit of an initial LCA model presented in figure 1 was tested with the data from all 

athletes in the sample (n=1366), including the five cognitive variables (verbal and visual 

memory, reaction time, visuomotor speed, and impulse control) and four symptom clusters 

(migraine, cognitive, sleep, and neuropsychiatric). Models including one through 10 clusters 

were tested, because a solution in excess of 10 clusters would have dubious utility. The initial 

models had several large magnitude BVRs between variables that would be theoretically related, 

even after the application of the model. For this reason, direct paths were specified between 

cognitive and migraine symptoms, visual and verbal memory, and visuomotor speed and reaction 

time, and then the models were re-run. Even with these specifications of the direct paths, none of 

the tested models included all BVRs in the acceptable range (see Table 4). BVRs are a metric of 

association between two variables that is unexplained by the tested model. Since the purpose of 

LCA is to explain the associations between variables using a latent variable, BVRs can be used 

as a fit metric. That several of the models included BVRs greater than 3.84 (chi-square 

distribution, df=1, p=.01) indicates that the models were not good fits for the data. Furthermore, 

with the exception of the approximate weight of evidence criterion (AWE), which bottomed out 

at eight classes, and Entropy, which indicated that any of the models could fit, all other indices 

indicated that there was no model that optimally fit the data. That is, the fit criteria continually 

improved as more clusters were added to the model (see Table 4).  

 It is possible that a different combination of variables would be more conducive to a 

well-fitting model. To this end, a model including only the five cognitive variables was then 
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tested, allowing direct pathways between the reaction time and visuomotor speed variables, as 

well as the visual and verbal memory variables, because these would theoretically be related (the 

rationale for direct paths is described above). This round of analyses revealed a somewhat 

different pattern of results. Each of the metrics indicated a different solution (see Table 5), with 

BIC indicating a five-cluster solution, AIC not indicating any solution, SABIC indicating a 

seven-cluster solution, and AWE indicating a two-cluster solution. The BVRs indicated that 

solutions including anywhere from six to 10 clusters were acceptable, and Entropy indicated that 

only the one cluster solution fit the data well. The same analysis was computed with the four 

symptom clusters. Except for the BVRs, which indicated that any of the solutions ranging from 

five to 10-cluters was acceptable, and Entropy, which indicated any of the models were 

minimally acceptable, none of the other indices indicated an acceptable solution (see Table 6). 

None of the analyses above yielded cluster solutions that indicated a good fit for the data.  

Furthermore, for all analyses above, the clusters that emerged simply reflected “levels of 

performance,” such that the within-cluster scores on each of the measures was at a consistent 

level, relative to the other clusters. Put another way, participants in each cluster performed at 

similar levels on all five cognitive variables and reported symptoms at levels that would be 

expected based on their cognitive scores. Moreover, as more clusters were included in the model, 

it simply reflected more fine-grained separation of the scores into narrower bands of 

performance. Theoretically, these clusters are not meaningful, which is further evidence that the 

models did not adequately explain the data.  

Acute Sample 

 Given the null findings of the initial analysis, the analyses were repeated in a sample that 

included only cases who completed the ImPACT within seven days of their injury. As presented 
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earlier, the most severe cognitive deficits and symptoms would be present during this time, with 

most athletes recovering within seven to 10 days. When all nine variables (five cognitive 

variables and four symptom clusters) were included, all fit indices indicated different cluster 

solutions (see Table 7). BIC indicated an eight-cluster solution, AIC and SABIC continually 

improved with the addition of more clusters in the model, AWE indicated a three-cluster 

solution, BVRs indicated that any cluster solution from eight to 10 was acceptable, and Entropy 

indicated that any solution was acceptable (see Table 7). This disagreement, in addition to 

theoretical considerations discussed above, that the emerging clusters are not theoretically 

meaningful, suggested that there was no single best solution to these analyses either.  

The same analyses were conducted with cognitive variables only (see Table 8). BIC 

indicated a three-cluster solution, AIC indicated an eight-cluster solution, SABIC indicated a six-

cluster solution, AWE suggested two clusters, Entropy suggested only the one cluster solution, 

and BVRs indicated five through 10 clusters; in general, there was vast disagreement. Similarly, 

the analyses were repeated for the symptom clusters only (see Table 9). BIC, AIC, and SABIC 

did not indicate any optimal solution. AWE indicated a four-cluster solution, Entropy indicated 

that any of the ten cluster solutions were acceptable, and BVRs indicated three through 10 cluster 

solutions. Although there was some tenuous agreement between particular fit indices, overall, the 

continual improvement of some indices, disagreement between the ones that did indicate a 

solution, and the notion that BVRs and entropy indicate only minimally acceptable solutions 

signify great disagreement. This disagreement between indices again indicated that there was no 

tested model that optimally fit the data. Furthermore, these analyses parsed the data in a similar 

manner to the analyses above, such that they reflected “levels of performance,” rather than 

distinct profiles with strengths and weaknesses in different domains. Again, this suggested that 
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the models do not well-explain the data and theoretically meaningful clusters did not emerge. 

Analyses including the five cognitive variables and 22 individual symptom scores from zero to 

six were also run in both the overall and acute samples, with the same result – the indices did not 

indicate any one optimal solution.  

Post-Hoc Analyses 

 Given the null findings in the planned analyses, follow up analyses were conducted, 

namely cluster analysis, to assess whether the null findings were an artifact of the statistical 

techniques or genuine absence of neuropsychological profiles. Cluster analysis was selected 

because it is similar to LCA in its aim, but different in that it approaches the goal in a different 

way. That is, LCA imposes a model on the data and then tests the fit of the model, whereas 

cluster analysis simply groups cases based on proximity, in n-dimensional space, where n is the 

number of variables in the analysis. Because several renditions of the LCA yielded null findings, 

a change in strategy was a reasonable path forward.  

Cluster Analysis 

 Cluster analysis is a procedure similar in result to LCA but very different in its process. 

That is, while LCA is a top-down process – it imposes a model and examines relationships 

among cases to test the model – cluster analysis is a bottom-up process in that it does not impose 

any a priori model on the data. In other words, cluster analysis examines relationships between 

cases on several variables specified a priori by the user, and attempts to maximize within group 

homogeneity and inter-group heterogeneity (Hair et al., 2009). Furthermore, cluster analysis is 

not a statistical technique, in contrast to its two relatives mentioned above.  

 Cluster analysis comes in several varieties, but they all have common features. One of 

these features is the measurement of similarity (although there are several variants of similarity 
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measures; e.g. correlation vs. distance), or the degree of agreement of each case to each other 

case on all the variables selected for the analysis (Hair et al., 2009). Once the similarities are 

calculated, there are two overarching categories of procedures to begin to form clusters: 

hierarchical and non-hierarchical. Hierarchical procedures proceed in a stepwise manner, with 

each case initially serving as its own cluster. The procedure then determines, using proximity, 

the two most similar cases and groups them, creating the first multi-case cluster. This procedure 

continues until all cases are classified into their nearest cluster. Non-hierarchical clustering 

techniques proceed by specifying random or pseudo-random “seeds” or starting centroids, and 

initially groups all cases into clusters based on the nearest centroid. It then iteratively reassigns 

cases to more appropriate clusters. These solutions are constrained by the a priori specification of 

parameters such as “maximum number of clusters.” 

Data Analysis 

 Analyses were run using Statistical Analysis Software (SAS) Proc Calis v.9.4. The 

sample was the same as that used for the a priori analyses (see “Participants” section above). 

Variables included in the analysis were the five interval-level cognitive scales from the ImPACT 

– verbal memory, visual memory, reaction time, visual motor speed, and impulse control – as 

well as all 22 items from the PCSS. In all analyses except the PCA, the same four symptom 

clusters – migraine, cognitive, sleep, and neuropsychiatric – were used in place of the 22 

individual symptoms.  

Principal Components Analysis (PCA). Prior to computation of the cluster analysis, a 

PCA was conducted on the five cognitive variables and 22-item PCSS for data reduction 

purposes. The analyses were computed based on correlation matrices, with prior communality 

estimates extracted from squared multiple correlations. Oblique oblimin rotation with a tau of 0.5 
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was selected given the relations between the items to be factored. The loading criterion was set at 

0.32, per the suggestion of Tabachnick and Fidell (2013).  

Cluster Analysis. A non-hierarchical k-means clustering approach was used. This 

method requires the user to specify a number of clusters. It then selects seeds, and assigns cases 

to clusters. An optimizing technique is employed that iteratively places cases into clusters and 

constantly monitors whether a particular case would better fit another cluster. This iterative 

process continues until a criterion is met that accounts for both minimizing intra-cluster distance 

and maximizing inter-cluster distance or the maximum number of iterations is reached. Euclidian 

distance was used as the measure of distance. This is calculated by determining the length of the 

hypotenuse of a right triangle between the two centroids in an n-dimensional (number of 

variables) problem space. Because non-hierarchical clustering techniques compute only one 

cluster solution (one cluster, two clusters, three clusters… six clusters) at a time, analyses for 

models including one through six clusters were computed. The option to update the cluster 

centroid with the addition of each case was selected in this analysis.  

Cluster analytic methods are susceptible to scaling effects. That is, if variables are on 

different scales, the software does not weight variables differently to adjust for the scaling for the 

metric. For this reason, variables with scales that include higher numbers as opposed to those 

with lower numbers would have more of an effect on the analysis. Therefore, it is important to 

standardize the variables to remove the effects of scaling. SAS includes an option to do this as 

part of the analysis, by converting the scores to z-scores. This option was selected in the current 

analysis.  

Cluster solution selection criteria. Several criteria are available for deciding on the 

number of clusters to be extracted from the data. The first criterion is the pseudo F, which is akin 
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to the similarly named F statistic in ANOVA. Basically, this statistic represents a ratio of 

between cluster distance to within cluster distance, so the higher the value the better. For 

example, if there is more variance between clusters (numerator) than between cases within 

clusters (denominator), then the value would be larger than if the opposite were true. In contrast 

to the F statistic in ANOVA, there is no associated significance test, so this is not an absolute 

measure of fit, it can only be assessed relative to other cluster solutions. Milligan and Cooper 

(1985) demonstrated this to be the strongest of the decision criteria for determining a correct 

cluster solution, although they acknowledge that its properties are likely to vary depending on 

the structure of the data.  

A second decision criterion available in SAS v.9.4 is the cubic clustering criterion 

(CCC). This criterion is based on a ratio of the error in the clustering of random data to the error 

in the clustering of the target data. Intuitively, there should be more error in the random data 

cluster solution than in the actual cluster solution. Therefore, larger values indicate more 

appropriate cluster solutions.  

Assumptions. Because cluster analysis is not a statistical technique, there are no 

statistical assumptions to meet. However, there are several factors that need to be considered 

before a cluster analysis is conducted. First, one must examine variables for multicollinearity 

because solutions produced by this technique can be greatly affected by highly overlapping 

variables (Hair et al., 2009). Bivariate correlations were examined – using Pearson’s correlation 

coefficient – between all variables included in the cluster analysis for multicollinearity. While 

there were several correlations in the mid- to high- .50 range, there were no variables that were 

sufficiently overlapping to warrant their removal from the analysis.  
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The second assumption to be considered is sample size. Of course, this assumption is not 

referring to statistical power; it is more theoretical in referring to the notion that there might be 

very small clusters that would be missed if not for a large enough sample to increase the 

likelihood of their adequate representation in the sample. The sample size (>1300) is large 

enough to be confident that all clusters would be adequately represented. Another consideration 

is the presence of outliers and whether to remove them. Although there are likely both univariate 

and multivariate outliers in these data, given the expected outcome for the LCA that one cluster 

that might emerge would be along the lines of performance validity, it would not make 

theoretical sense to remove these cases that have the potential to form a distinct cluster.  

Principal Components Analysis and Visualization of Data 

 As mentioned above, principal components analysis was conducted for data reduction 

and visualization purposes. Because cluster analysis is conducted in n-dimensional Euclidian 

space, with n being the number of variables included in the analysis, it is not possible to visualize 

the data in this dimensional space. A commonly employed method for projecting the data into a 

lower dimensional space is to compute a PCA on the data, with the purpose of producing 

component scores and plotting them in a two- or three-dimensional manner, depending upon the 

number of factors extracted. The assumptions of continuous variables, sampling adequacy, and 

suitability for data reduction (adequate relationships between variables to be factorable) were 

met. The assumption of linear relationships between variables was not met, but analyses were 

continued.  

 Results suggested a two-component solution (see Table 10), indicated by both the factor 

loading matrix of standardized regression coefficients and the structure matrix, consisting of 

correlations between the item scores and component scores. All items except the nausea 
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symptom had loadings >0.32 on one component, and there were no cross loadings. This solution 

also makes good sense on pragmatic and theoretical grounds. That is, given the purpose of the 

analysis, data reduction for visualization, two-dimensions make good sense, because it can easily 

be plotted and visualized on a typical two-dimensional plot. Secondly, the selection was made on 

theoretical grounds. Since the cognitive and symptom scores are dissociable metrics collected 

using different methods (i.e. performance-based vs. self-report), this solution is defensible, 

theoretically.  

 Scores were then computed for each of the two components. For the symptom 

component, the zero to six Likert-type responses to each symptom (excluding nausea, given its 

failure to load on the component) were summed and that total was used as the component score. 

A different procedure was employed for the cognitive indices for three reasons. First, because the 

directions of the scaling of each of the cognitive scores differed (i.e. for three of the five scales, 

higher numbers indicated good scores and for two of the five scores, lower scores indicated good 

scores). Second, each of the scores is on a different scale. Third, a simple sum of the scores 

would be meaningless for the two reasons mentioned previously, as well as the nature of the 

performance based measures. For these reasons, the Z-scores of the cognitive indexes were 

computed and averaged to create a composite cognitive score.  

 The two components were then plotted with the symptom component on the x-axis and 

the cognitive component on the y-axis (see figure 2). Visual examination of the plot revealed 

dense population at the Y-intercept, indicating a low modal score on the symptom component. 

There was some spread on the y-axis, but no visually discernable clusters were present. Given 

the loss of information as a result of the data reduction efforts (PCA), it is possible that there 
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were clusters present that were obfuscated by this lack of fine-grained analysis. Therefore, 

analyses were continued despite the lack of visual indication of clusters within the overall data.  

Cluster Analysis: Overall Sample 
 
 Conventional cluster analysis was run to mirror the previously conducted LCA, with one 

exception, that cluster analysis is not able to control for time since injury. These analyses were 

run using the same variables as the LCA (nine cognitive variables, four symptom composite 

variables) The analysis was first run in the overall sample, including the five cognitive variables 

and four symptom clusters (see Table 11). Results revealed a similar pattern to that observed in 

the LCA. The pseudo F statistic and CCC continually worsened as more clusters were added to 

the data, so analyses were stopped at a six-cluster solution. An exception to the continual 

worsening of the fit is the four-cluster solution, in which there was a marginal jump in both 

aforementioned statistics. Upon closer inspection, one of the clusters included only one case, 

rendering it very unstable, so it was disregarded, and treated as an outlier. Two of the remaining 

three clusters conformed to the same pattern observed in the LCA (see figure 3). That is, they 

were again separated into levels of performance. However, the third cluster yielded a cognitively 

impaired group, with lower symptom reports than their less cognitively deficient counterparts. 

One of the clusters, cluster 4, reflected average to low average cognitive scores and very high 

symptom reports. The third cluster reflected athletes with intact cognition and low symptom 

reports. The gender breakdown of the three clusters were as follows: 66% male, 34% female 

(cluster 1); 61% male 39% female (cluster 3); and 53% male 47% female (cluster 4). Cluster two 

was excluded from analyses because it included only one case.  

MANOVA. This pattern was confirmed by follow-up a Multivariate Analysis of 

Variance (MANOVA) using cluster membership as the independent variable and including as 
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dependent variables: the five cognitive variables, the four symptom clusters, the overall PCSS 

symptom score, age, and education (see Table 13). Because their inclusion would have 

substantially reduced the sample size for the MANOVA due to missing data, two Bonferonni-

corrected (.05/2=.025) univariate ANOVAs were run to examine the differences between clusters 

on time since injury and number of previous concussions.  

Data screening. The data were examined for univariate and multivariate outliers prior to 

the computation of the MANOVA. Univariate outliers were defined as z-scores greater than 3.29 

(Chi-square distribution, p=.001). Univariate outliers were evident on number of years playing 

(22), number of previous concussions (13), verbal memory (2), visuomotor speed (3), reaction 

time (8), impulse control (15), total symptom score (13), migraine symptoms (19), cognitive 

symptoms (13), sleep symptoms (16), neuropsychiatric symptoms (24), and time since injury 

(15). Mahalanobis distance with a cut off of 36.123 (Chi-Square p=.001, df=14) revealed 38 

multivariate outliers. Univariate outliers were not removed from the analysis because of the 

nature of the variables in question. To remove outliers in the case of clinical data such as these 

would be to reject valid, albeit extreme scores. Furthermore, in large sample sizes, some extreme 

values are expected based on the normal distribution (Tabachnick & Fidell, 2013). Multivariate 

outliers are more likely to represent participants who performed and reported in a way that is not 

representative of the typical clinical case. For this reason, the MANOVA was computed with and 

without multivariate outliers removed to determine whether their removal had a substantive 

effect on the analysis. The analysis did not change substantively when the multivariate outliers 

were removed, so they were included in the final analysis.   

Assumptions. Prior to computing the analysis, the assumptions of MANOVA were 

examined. The first assumption is multivariate normality. There are not tests available to test 
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multivariate normality, so it was approximated based on tests of univariate normality of each 

variable with each cluster. Kolmogorov-Smirnov tests revealed that this assumption was violated 

(p<.05) for all variables. The preponderance of skewness and kurtosis values were within 

acceptable limits. Central limits theorem begins with larger samples, so normality was treated as 

a met assumption. Homogeneity of variance was violated for all variables except for age, number 

of previous concussions, and time since injury. When sample sizes are large, MANOVA is 

robust to violations of both normality and homogeneity of variance (Tabachnick & Fidell, 2013), 

so the analyses were continued. The assumption of linearity was violated based on visual 

inspection of several bivariate scatterplots of variables included in the analyses. This assumption, 

however, is typically given less importance, because its violation results in a loss of power, 

possibly masking significant findings, rather than inflating significance (Tabachnick & Fidell, 

2013). The final assumption of MANOVA is absence of multicollinearity. This assumption was 

met based on an inspection of a bivariate correlation matrix, which revealed no correlations of 

concerning magnitude.  

Results. Multivariate Analysis of Variance revealed significant main effects for age, 

education, and all of the cognitive variables and symptom scores, including overall symptoms. 

The effects were non-significant for time since injury, and number of previous concussions (see 

Table 13). Due to the violation of the homogeneity of variance assumption, Games-Howell post-

hoc tests was computed for contrasts for both the MANOVA and ANOVAs. The preponderance 

of contrasts yielded significant results between clusters (see Table 14). In cluster analysis, there 

is no “right” or “wrong” solution, it is the meaningfulness of the clusters that is important. In this 

case, one of the clusters is potentially meaningful, representing a group of athletes who are 

performing poorly and reporting few symptoms. This will be discussed further below.   
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Cluster Analysis: Acute Sample 
 
 The same analyses were computed in the acute sample (see Table 12), again with similar 

results. The pseudo F statistic and CCC continually worsened as more clusters were added to the 

solutions. Again, there was an exception to this rule at the five-cluster solution, at which point 

both the pseudo F and CCC improved. The clusters included 40, 50, and 237 cases. The gender 

breakdown of each of these clusters is as follows: 60% male, 40% female (cluster 1); 50% male, 

50% female (cluster 2); and 75% male, 25% female (cluster 3).  

MANOVA. These analyses were followed up with another MANOVA using cluster 

membership as the independent variable and including as dependent variables: the five cognitive 

variables, the four symptom clusters, the overall PCSS symptom score, age, and education (see 

Table 16). Clusters two and four were not included in analyses because they included only one 

and two cases, respectively.  

Data screening. The data were examined for univariate and multivariate outliers based 

on z-scores and Mahalanobis distance. The univariate outlier screening procedure revealed 

several univariate outliers in excess of the cutoff of 3.29. These outliers were observed on the 

following variables: number of previous concussions (5), visuomotor speed (1), reaction time 

(1), impulse control (4), total symptom score (1), migraine symptoms, (1), cognitive symptoms 

(5), sleep symptoms (7), and neuropsychiatric symptoms (6). There were 15 multivariate outliers 

based on a cutoff of 36.123 (Chi-Square p=.001, df=14). Given the nature of the variables, to 

exclude outliers would be tantamount to rejecting valid, albeit extreme scores. For this reason, no 

outliers were removed from the current analysis.  

Assumptions. Prior to computing the analysis, the assumptions of MANOVA were 

examined. The first assumption is multivariate normality. There are not tests available to test 
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multivariate normality, so it was approximated based on tests of univariate normality of each 

variable with each cluster. Kolmogorov-Smirnov tests revealed that this assumption was violated 

(p<.05) for all variables. The preponderance of skewness and kurtosis values were within 

acceptable limits. Central limits theorem states that as sample sizes get larger, the distribution 

begins to resemble a normal distribution, so normality was treated as a met assumption. 

Homogeneity of variance was violated for all variables except for age, number of previous 

concussions, and time since injury. When sample sizes are large, MANOVA is robust to 

violations of both normality and homogeneity of variance (Tabachnick & Fidell, 2013), so the 

analyses were continued. The assumption of linearity was violated based on visual inspection of 

several bivariate scatterplots of variables included in the analyses. This assumption, however, is 

typically given less importance, because its violation results in a loss of power, possibly masking 

significant findings, rather than inflating significance (Tabachnick & Fidell, 2013). The final 

assumption of MANOVA is absence of multicollinearity. This assumption was met based on an 

inspection of a bivariate correlation matrix, which revealed no correlations of concerning 

magnitude.  

Results. Multivariate Analysis of Variance revealed significant main effects for age, 

education, and all of the cognitive variables and symptom scores, including overall symptoms. 

The effects were non-significant for time since injury, and number of previous concussions (see 

Table 16). Due to the violation of the homogeneity of variance assumption, Games-Howell post-

hoc tests was computed for contrasts for the MANOVA. The preponderance of contrasts yielded 

significant results between clusters (see Table 17). In cluster analysis, there is no “right” or 

“wrong” solution, it is the meaningfulness of the clusters that is important. The clusters that 

emerged in this analysis were consistent with those observed in the overall sample; two clusters 
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emerged that reflected levels of performance and symptom reporting, while the third reflect a 

group that performed poorly on the cognitive tests, but did not report many symptoms. Again, 

the relatively consistent clusters reflected average to low average scores with high symptom 

reports, and low symptom reports with intact cognition, respectively.  

CHAPTER 4:  

DISCUSSION 

 The planned analyses (LCA) did not support either of the expected outcomes of this 

study. The first expected outcome, that clusters would emerge, was unsupported given the high 

level of disagreement between fit indices for all conducted analyses. These disagreements 

indicate that many, and in some cases all, of the fit indices selected differing solutions as 

optimal. Furthermore, in some cases, the indices never indicated an optimal solution. Further 

disconfirming evidence is the finding that none of the clusters that emerged were meaningful. 

That is, each cluster simply reflected a consistent “level of performance” across domains, rather 

than reflecting distinct neuropsychological profiles of strengths and weaknesses, or deficit and 

intact cognitive functions and symptomatic or asymptomatic reporting as a result of a 

concussion. The second expected outcome was dependent on the first, that if clusters emerged, 

one would represent a performance/symptom validity cluster, reflecting underreporting of 

symptoms to return to play more quickly. Because no optimal cluster solutions emerged, the 

second expected outcome could not be supported.  

Similarly to the LCA, the conventional cluster analysis largely did not yield many 

meaningful results, although there is potential for some interpretation. In the case of both the 

overall and acute samples, the analysis revealed continually worsening pseudo F and CCC 

statistics with the addition of more clusters in the solutions, with some exceptions. Visual 
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inspection of all cluster solutions revealed clusters that reflected level of performance rather than 

distinct neuropsychological patterns of strengths and weaknesses. Exceptions to the continually 

worsening fit statistics were the four-cluster solution in the overall sample and the five-cluster 

solution in the acute sample. Because of spikes in both the pseudo F and CCC statistics, these 

solutions were followed up with a one-way Analyses of Variance, which revealed significant 

results for all the cognitive and symptom variables in both cases.  

 The MANOVA for the overall sample four-cluster solution demonstrated significant 

differences between the clusters on all cognitive and symptom variables, as well as age and 

education (see Table 13). In order, the variables that maximally discriminated between clusters, 

based on effect sizes (partial eta-squared) were overall symptoms, cognitive symptoms, migraine 

symptoms, neuropsychiatric symptoms, and sleep symptoms. The cognitive variables also 

discriminated between clusters, but their effect sizes were smaller, ranging from 0.114 (impulse 

control) to 0.354 (verbal memory). Demographic and background variables yielded very small 

effect sizes ranging from .005 (time since injury) to .028 (age). The preponderance of contrasts 

between clusters were also significant (see Table 14). In the first two clusters, the 

aforementioned pattern of the clusters representing levels of performance, was noted. However, 

the third cluster appears to represent a group of athletes who consistently have the lowest scores 

in cognition out of the three groups, but are reporting fewer symptoms than the fourth cluster, 

which has better cognitive scores than the third cluster. While it is possible that this represents an 

impression management group, they are still reporting more symptoms than would be expected 

for a group of athletes who is deliberately underreporting. For example, their average overall 

symptom score is 12.65, which falls within the “unusual” range in the classification charts in the 

ImPACT manual for both males and females, and those who are in high school and university 
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(Lovell, 2011). An impression management group would likely report fewer symptoms than this, 

so as to be allowed to return to play more quickly. So, it is possible that this cluster represents a 

group of athletes who are experiencing deficits in cognition but are reporting few symptoms, 

perhaps simply as an artefact of a conservative response style.  

In the acute sample five-cluster solution the latter two clusters empirically confirmed the 

pattern of cluster separation, that they reflect levels of performance/reporting, rather than 

meaningful clusters. The first cluster, was potentially interesting in its characteristics. None of 

these clusters differed significantly on number of previous concussions, or time since injury, but 

there were significant differences on age, education, and all of the cognitive and symptom 

variables (see Table 16). In order, the variables that were most discriminatory based on effect 

size (partial eta-squared) were overall symptoms, migraine symptoms, cognitive symptoms, 

neuropsychiatric symptoms, and sleep symptoms. The cognitive variables, although significant, 

were less discriminatory between clusters, with effect sizes ranging from 0.075 (impulse control) 

to 0.314 (reaction time). These results were broadly consistent with the gradient of 

discrimination between clusters for the overall sample cluster solution.  

The third cluster of the acute sample five-cluster solution reflected the same pattern 

observed in the overall sample four-cluster solution. That is, consistently low cognitive scores, 

with low symptom reporting. Furthermore, the average cluster symptom score was again in the 

“unusual” range from the ImPACT manual (Lovell, 2011), again indicating that this likely does 

not reflect an impression management group, but rather a group of athletes with a conservative 

response style. So, it is possible that this cluster represents a group of athletes who are 

experiencing deficits in cognition but are reporting few symptoms, perhaps simply as an artefact 

of a conservative response style.  
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One of the three clusters for both samples emerged with low average to average cognitive 

scores and very high symptom reports. Although it is difficult to interpret these scores without 

examining athletes’ baseline scores, this could represent a group of athletes with minimal or no 

detectable cognitive deficits following concussion, but a more liberal response style in reporting 

symptoms. Another possibility is that these athletes genuinely experience many symptoms in the 

absence of detectable cognitive deficits. Lastly, it is possible that the cognitive deficits resolved 

before the symptoms, resulting in the observed profile. This is certainly consistent with previous 

work demonstrating that cognition improves before symptoms (Williams et al., 2015). It is not 

likely that athletes are intentionally over-reporting symptoms, given that the incentive structure – 

to return to play as quickly as possible – is in the opposite direction. While the symptom reports 

seem out of proportion for the level of cognitive performance, it is important not to over-interpret 

the disproportionate symptom reports without examining change from baseline, because it is 

possible that there was still a significant decline from baseline that is not captured by the norms. 

In general, although the levels of symptom reporting are higher than expected given the level of 

cognitive deficits, two clusters for both samples are relatively consistent levels of deficits and 

reporting compared to the other clusters. That is, one cluster reflects intact cognition and low 

symptom reports, and one reflects slightly poorer cognition and high symptom reports, and as 

previously discussed – the exception to the consistency – one reflects poor cognition and low 

symptom reports.  

Neither the LCA nor the conventional cluster analysis fully supported either of my 

expected outcomes, although there was some marginal, preliminary support for both. The first 

expected outcome was that clusters would emerge from the data. The LCA did not yield fit 

statistics that agreed on any solution, sometimes indicating no solution was acceptable at all. The 
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conventional cluster analysis yielded similar results. While two solutions were indicated by the 

fit indices, one in the overall sample and one in the acute sample, many of the clusters were not 

meaningful in that they simply separated the cases into levels of performance. This is considered 

to be a danger of cluster analysis, in that it will find clusters whether they are present or not 

(Hair, Black, Babin, & Anderson, 2009). However, one cluster from each of the cluster solutions 

that were indicated appeared to be meaningful. These will be discussed further below.  

The second expected outcome, that an impression management cluster would emerge 

from the data, had some potential support. In both the overall and acute samples, cluster 

solutions emerged that consisted of a group of athletes who performed very poorly on the 

cognitive scores across domains, but who reported fewer symptoms than the athletes in other 

groups, whose cognitive scores were significantly better (see Tables 14 and 15). Based on the 

very poor cognitive scores in these clusters, one would expect them to report more symptoms 

than those athletes whose cognitive scores were that much better. However, as discussed above, 

their symptom reports were still higher than would be expected if this were truly an impression 

management group, who would be attempting to report as few symptoms as possible to go back 

to play more quickly. That their average score still fell within the “unusual” range, as outlined in 

the ImPACT manual (Lovell, 2011), leads to the conclusion that this group represents a cluster 

of athletes who are cognitively impaired, but have a conservative response style on self-report 

measures. Another possibility is that this represents a group with true cognitive impairment and 

few symptoms, irrespective of response style, although the first is more likely. Another 

interpretation could be that the athletes in this cluster are minimizing their symptoms, but are still 

mildly elevated, nonetheless.  
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Overall, both the LCA and the conventional cluster analysis yielded clusters that 

resembled levels of performance or amount of cognitive deficit and symptom reports, rather than 

distinct neuropsychological profiles. While one cluster from each of the conventional cluster 

solutions had potentially interesting characteristics, still these did not entirely support the 

expected outcomes of the current study. The expected clusters would have reflected strengths 

and weaknesses in different cognitive domains and higher symptom reports in particular domains 

of symptoms, rather than consistent intra-cluster levels across domains, for example, a cluster 

with only emotional symptoms, or only sleep symptoms, etc. Collins et al. (2014) propounded 

such an interesting model, so it will be discussed here in relation to the current results.  

It should be made clear that the current study was not directly testing Collins et al’s 

(2014) model. Theirs is simply a conceptual model of potential clusters generated from the 

literature. The present analyses were an exploration of data with no definite model imposed on it, 

but instead testing several different models that could account optimally for the data. That being 

said, their model is theoretically interesting, so it will be discussed here in relation to the present 

results. Collins et al. (2014) postulated the following clusters in concussion: cognitive, 

vestibular, ocular-motor, post-traumatic migraine, cervical, and anxiety/mood. Three of these 

clusters align with three of the symptomatic variables that were included in these analyses: 

cognitive, migraine, and neuropsychiatric symptoms. Furthermore, the current study included 

five cognitive variables, which, if athletes scored poorly on the cognitive variables, and were 

thus cognitively impaired by the concussion, would contribute to the cognitive cluster postulated 

by Collins and colleagues. These authors additionally postulated a vestibular cluster. While some 

items on the PCSS (balance problems, dizziness) could contribute to a vestibular scale, they were 

included in the migraine symptom group from Lau et al. (2011), potentially losing some 
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information in the analysis. In any case, a more appropriate metric of vestibular impairment 

would have been performance-based balance testing data, instead of self-report. Unfortunately, 

these data were not available and future studies should examine this question using the type of 

vestibular data described above. Ocular-motor and cervical data were also not available for this 

study. So, it is possible that these analyses would have conformed more closely to Collins and 

colleagues’ hypotheses if different types of data had been available for this study. There was 

some support for the first expected outcome, in that there were cluster solutions that were 

indicated in the conventional cluster analysis, but the majority of the clusters that emerged were 

not meaningful. However, in each of the two cluster solutions that emerged, one of the clusters 

was potentially meaningful.  

Because this study was the first to attempt to address this particular question, it is difficult 

to determine the cause of the unexpected results in this case. There are several possibilities, some 

of which were discussed above, but will be further explored here. First, it is possible that if the 

present study had examined athletes at different points in their concussion recovery period, such 

as immediately post-concussion (e.g. ≤3 days), subacute (≥8 days), or even in the chronic phase 

(>30 days post injury), clusters might have emerged. There are many possibilities for temporally 

parsing the time post-injury. So, one possibility is that the current study examined the wrong 

time period. Second, it is possible that if other, more appropriate or more comprehensive 

variables were included in the study, that clusters would emerge. For example, if performance-

based balance data, more comprehensive neuropsychological assessment data, or data on pre-

morbid risk factors were available, clusters might have emerged. Third, perhaps if the data were 

coded in a different way, it is possible that this would have changed the outcome. For example, if 

the data were parsed into ordinal-level groups and the analysis was conducted that way, the 
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findings might have differed. Another possibility would be to take into account baseline 

performance on the ImPACT and examine their scores relative to their baseline scores. That is, 

to parse the scores for each of the variables into groups based on change from baseline, to get a 

more individualized metric of their performance. Fourth, it is possible that there are different 

clusters in males and females or different age groups, or that different clusters would emerge if 

the data were parsed by some other variable. For example, the literature shows that younger 

individuals take longer to recover from concussion. This, combined with the heterogeneity in 

neurodevelopmental trajectories could introduce noise into the data that could obscure the 

identification of subgroups. To preserve the necessary sample sizes, the sample was not divided 

based on age in the current study, so it is possible that this is one of the reasons that subgroups 

were not identified. The final possibility to be discussed here is that that these findings might be 

a statistical artefact. LCA and conventional cluster analysis both initiate their procedures by 

placing pseudo-random seeds, which serve as the beginnings of the eventual clusters. While 

LCA attempts to correct for this by running each analysis with several different sets of seeds, it is 

still possible that the initial seeds for these analyses were inappropriate, resulting in the null 

findings described here.  

All of the questions propounded above should be investigated in future research in this 

field. However, it is possible that, in reality, there are no subgroups in sport-related concussion. 

In other words, it is possible that each concussion is unique, as an interaction of numerous 

idiosyncratic variables. This is certainly consistent with clinical experience, where it is 

continually observed that each concussion seems to present differently. Another possibility is 

that there is simply a dose-response relationship between the “severity” of the concussion and the 

cognitive deficits and symptomology experienced in the aftermath. Despite these possibilities, 
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this question is far from answered. This is the first investigation of this potentially important 

area, and future research should continue to examine it using different methods and variables.  

Limitations 

This study had several limitations. First, the data used were retrospective, clinical data, 

and thus there were several variables that were not available that would have been preferable to 

have had the study been designed prospectively. For example, medical and psychiatric history, 

balance, and comprehensive neuropsychological data. The retrospective design was out of 

necessity, in that an adequate sample could not have been collected in the time frame of this 

project for the type of analyses that were conducted. A second limitation of this study was that 

there was a very large age range in these data. This was necessary because large sample sizes are 

required for this type of analysis, but ideally these data would have been separated by age into 

more homogeneous groups. In addition to the questions suggested above, future research should 

attempt to address the limitations of the current study. A third possible limitation is the scaling of 

the variables in the conventional cluster analysis. It is possible that, because z-scores force each 

variable to take on a mean of zero and a standard deviation of one, it is possible that this is 

another contributing factor to the surprising results. Had a different scaling technique been used, 

it is possible that the results may have differed. Future research should investigate this question.  
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Table 1 
 
The Post-Concussion Symptom Scale 
Symptom Symptom Composite  
Headache Migraine 
Nausea Migraine 
Vomiting Migraine 
Balance Problems Migraine 
Dizziness Migraine 
Fatigue Cognitive  
Trouble Falling Asleep Sleep 
Excessive Sleep Sleep 
Loss of Sleep Sleep 
Drowsiness Cognitive 
Light Sensitivity Migraine 
Noise Sensitivity Migraine 
Irritability Neuropsychiatric 
Sadness Neuropsychiatric 
Nervousness Neuropsychiatric 
Feeling More Emotional Neuropsychiatric 
Numbness Migraine 
Feeling Slowed Down Cognitive 
Feeling Mentally Foggy Cognitive 
Difficulty Concentrating Cognitive 
Difficulty Remembering Cognitive 
Visual Problems Migraine 
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Table 2 

Descriptive Statistics for the variables in the overall sample 

Variable Mean(SD) 
Verbal Memory 82.37(12.68) 
Visual Memory 71.43(14.04) 
Visuomotor Speed 36.13(7.47) 
Reaction Time 0.63(0.11) 
Impulse Control 7.043(5.98) 
Migraine Symptoms 4.24(6.02) 
Cognitive Symptoms 3.27(4.71) 
Sleep Symptoms 1.35(2.18) 
Neuropsychiatric Symptoms 1.28(2.95) 
Total Symptoms 10.56(14.59) 
Time Since Injury 12.84(11.70) 
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Table 3 

Descriptive Statistics for the variables in the acute sample 

Variable Mean(SD) 
Verbal Memory 83.05(12.37) 
Visual Memory 72.07(13.76) 
Visuomotor Speed 36.22(7.21) 
Reaction Time 0.62(0.12) 
Impulse Control 6.95(6.33) 
Migraine Symptoms 4.77(6.32) 
Cognitive Symptoms 1.44(2.36) 
Sleep Symptoms 4.58(1.69) 
Neuropsychiatric Symptoms 1.36(3.07) 
Total Symptoms 11.45(15.12) 
Time Since Injury 4.58(1.69) 
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Table 4. Fit indices for Overall Sample (n=1366) Cognitive Variables and Symptom Clusters 

Note. BIC=Bayesian Information Criterion; AIC=Aikeke Information Criterion; SABIC=Sample Adjusted Bayesian Information 
Criterion; AWE=Approximate Weight of Evidence; BVR>CO= the number of bivariate residuals above the cutoff of 3.84. Models 
indicated by each of the indices are in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 
BIC 65,164.06 55,635.57 51,922.69 50,322.65 49,724.57 48,399.73 47,931.66 47,341.87 47,097.65 46,839.83 
AIC 65,054.45 55,405.90 51,572.98 49,852.88 49,134.75 47,689.86 47,931.66 46,391.90 46,027.63 45,649.75 
SABIC 65,097.35 55,679.57 51,709.86 50,036.75 49,365.61 47,967.71 47,426.59 46,763.73 46,446.45 46,115.57 
AWE 65,378.67 56,141.33 52,768.79 51,442.93 51,180.44 50,217.75 49,918.23 49,545.66 49,549.54 49,582.67 
Entropy 1.00 0.97 0.95 0.94 0.93 0.90 0.93 0.93 0.93 0.93 
BVR>CO 78% 47% 27% 22% 14% 14% 14% 14% 8% 6% 
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Table 5. Fit indices for Overall Sample (n=1366) Cognitive Variables only 

Note. BIC=Bayesian Information Criterion; AIC=Aikeke Information Criterion; SABIC=Sample Adjusted Bayesian Information 
Criterion; AWE=Approximate Weight of Evidence; BVR>CO= the number of bivariate residuals above the cutoff (CO) of 3.84. 
Models indicated by each of the indices are in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 
BIC 36,905.21 35,527.18 35,238.46 35,162.55 35,152.50 35,182.85 35,180.50 35,236.34 35,271.17 35,339.98 
AIC 36,842.57 35,391.47 35,029.67 34,880.69 34,797.57 34,754.84 34,679.42 34,662.18 34,623.93 34,619.67 
SABIC 36,867.09 35,444.59 35,111.40 34,991.02 34,936.49 34,922.37 34,875.55 34,886.91 34,877.27 34,901.61 
AWE 37,027.84 36,256.84 36,466.92 37,115.75 37,388.88 37,706.88 37,919.41 38,300.77 38,750.95 38,865.72 
Entropy 1.00 0.70 0.68 0.61 0.61 0.60 0.64 0.64 0.62 0.64 
BVR>CO 80% 60% 20% 20% 10% 0% 0% 0% 0% 0% 
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Table 6. Fit indices for Overall Sample (n=1366) Symptom Clusters only 

Note. BIC=Bayesian Information Criterion; AIC=Aikeke Information Criterion; SABIC=Sample Adjusted Bayesian Information 
Criterion; AWE=Approximate Weight of Evidence; BVR>CO= the number of bivariate residuals above the cutoff (CO) of 3.84. 
Models indicated by each of the indices are in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 
BIC 28,258.85 19,032.68 15,638.89 13,973.56 13,411.63 12,014.71 11,426.01 11,340.85 10,761.57 10,378.49 
AIC 28,211.88 18,928.29 15,477.08 13,754.33 13,134.99 11,680.65 11,034.53 10,891.96 10,255.27 9,814.77 
SABIC 28,230.26 18,969.15 15,540.41 13,840.14 13,243.27 11,811.41 11,187.76 11,067.66 10,453.44 10,035.42 
AWE 28,350.82 19,285.69 16,135.05 14,599.47 14,252.85 13,071.93 12,502.80 12,770.09 12,124.49 11,850.83 
Entropy 1.00 0.97 0.96 0.95 0.92 0.91 0.94 0.89 0.93 0.93 
BVR>CO 83% 83% 33% 17% 0% 0% 0% 0% 0% 0% 
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Table 7. Fit indices for Acute Sample (n=330) Cognitive Variables and Symptom Clusters 

Note. BIC=Bayesian Information Criterion; AIC=Aikeke Information Criterion; SABIC=Sample Adjusted Bayesian Information 
Criterion; AWE=Approximate Weight of Evidence; BVR>CO= the number of bivariate residuals above the cutoff of 3.84. Models 
indicated by each of the indices are in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 
BIC 15,972.67 13,964.87 13,335.48 13,207.28 12,970.19 12,941.24 13,002.14 12,916.58 12,931.13 12,962.67 
AIC 15,892.89 13,797.71 13,335.48 13,207.28 12,540.89 12,424.57 12,398.08 12,225.14 12,152.32 12,096.48 
SABIC 15,906.06 13,825.30 13,122.95 12,865.37 12,611.75 12,509.85 12,497.79 12,339.27 12,280.87 12,239.45 
AWE 16,157.45 14,366.30 13,958.22 14,051.51 14,019.33 14,209.99 14,473.23 14,594.54 14,815.11 15,028.45 
Entropy 1.00 0.97 0.95 0.94 0.95 0.93 0.93 0.94 0.94 0.95 
BVR>CO 56% 17% 6% 6% 6% 6% 3% 0% 0% 0% 
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Table 8. Fit indices for Acute Sample (n=330) Cognitive Variables Only 

Note. BIC=Bayesian Information Criterion; AIC=Aikeke Information Criterion; SABIC=Sample Adjusted Bayesian Information 
Criterion; AWE=Approximate Weight of Evidence; BVR>CO= the number of bivariate residuals above the cutoff of 3.84. Models 
indicated by each of the indices are in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 
BIC 9,018.42 8,719.03 8,660.39 8,681.22 8,723.56 8,761.86 8,816.96 8,848.43 8,923.50 8,959.60 
AIC 8,972.83 8,620.25 8,508.43 8,476.07 8,465.22 8,450.33 8,452.25 8,430.53 8,452.41 8,435.33 
SABIC 8,980.36 8,836.55 8,533.51 8,509.93 8,507.86 8,501.75 8,512.45 8,499.51 8,530.17 8,521.87 
AWE 9,124.01 9,065.72 9,195.09 9,360.27 9,615.20 9,047.49 9,978.69 10,146.85 10,341.68 10,482.25 
Entropy 1.00 0.70 0.70 0.70 0.68 0.73 0.72 0.74 0.76 0.78 
BVR>CO 50% 20% 10% 10% 0% 0% 0% 0% 0% 0% 
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Table 9. Fit indices for Acute Sample (n=330) Symptom Clusters Only 

Note. BIC=Bayesian Information Criterion; AIC=Aikeke Information Criterion; SABIC=Sample Adjusted Bayesian Information 
Criterion; AWE=Approximate Weight of Evidence; BVR>CO= the number of bivariate residuals above the cutoff of 3.84. Models 
indicated by each of the indices are in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9 class 10 class 
BIC 6,954.25 4,993.31 4,402.34 4,171.88 4,077.13 3,941.23 3,974.37 3,787.27 3,793.02 3,736.12 
AIC 6,920.06 4,917.33 4,284.56 4,012.32 3,875.78 3,698.09 3,689.43 3,460.55 3,424.51 3,325.83 
SABIC 6,925.70 4,929.87 4,304.00 4,038.66 3,909.01 3,738.22 3,736.47 3,514.48 3,485.33 3,393.55 
AWE 7,033.44 5,181.25 4,708.84 4,583.67 4,606.95 4,604.55 4,742.06 4,624.81 4,715.75 4,756.49 
Entropy 1.00 0.97 0.95 0.95 0.93 0.91 0.90 0.92 0.94 0.96 
BVR>CO 83% 33% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 10. Standardized Regression Coefficients for PCA of ImPACT Data 
Symptom Symptom Component Cognitive Component 
Verbal Memory 0.10002 0.71132 
Visual Memory 0.07474 0.67028 
Visuomotor Speed 0.11102 0.72652 
Reaction Time -0.06044 -0.64875 
Impulse Control 0.00485 -0.38804 
Headache 0.54256 -0.29635 
Nausea 0.20646 -0.10793 
Vomiting 0.46649 -0.1466 
Balance Problems 0.54414 -0.29185 
Dizziness 0.59297 -0.2561 
fatigue 0.51795 -0.08512 
Trouble Falling Asleep 0.56544 -0.07788 
Excessive Sleep 0.36161 -0.16978 
Loss of sleep 0.42081 -0.01875 
Drowsiness 0.52753 -0.28385 
Light Sensitivity 0.64807 -0.15648 
Noise Sensitivity 0.53208 -0.22558 
Irritability 0.66207 -0.06034 
Sadness 0.5737 0.03601 
Nervousness 0.66889 0.11474 
More Emotional 0.70998 0.15631 
Numbness 0.37924 -0.0713 
Feeling Slow 0.6406 -0.16015 
Foggy 0.71405 -0.12682 
Difficulty Concentrating 0.68459 -0.21658 
Difficulty Remembering 0.53408 -0.15837 
Visual_Problems 0.57900 -0.14206 
Note. Items loading (>0.32) on each component are indicated in bold.  
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Table 11 
Cluster solutions for the overall sample with five cognitive variables and four symptom scores 

 
 
 
 
 
 
 
 

Solution Cluster Freq.  RMS SD Max Dist. 
 Near. 

Clus. Dist. Btw. 
Pseudo 
F 

Overall 
R2 CCC 

6 1 171 0.9452 5.7797   2 3.4360 235.06 0.289 72.601 
  2 899 0.6069 3.9795   5 2.8217       
  3 49 1.1745 7.2107   1 4.0078       
  4 1 . 0   3 11.6136       
  5 230 0.8369 5.4904   2 2.8217       
  6 16 1.2375 5.2563   3 5.029       
5 1 1 . 0   5 11.5500 262.31 0.250 78.058 
  2 910 0.6153 3.9593   4 2.7914     
  3 162 1.0295 6.2543   4 3.7315    
  4 243 0.8415 5.5168   2 2.7914       
  5 50 1.3142 7.5240   3 3.9190       
4 1 996 0.6516 4.6983   3 3.2372 285.95 0.204 78.650 
  2 1 . 0   4 12.5976       
  3 208 0.9516 6.9260   1 3.2372       
  4 161 1.1927 8.5699   3 3.9217       
3 1 1131 0.7222 6.7845   2 4.1638 279.53 0.150 64.282 
  2 234 1.2746 8.6920   1 4.1638       
  3 1 . 0   2 12.5771       
2 1 140 1.3518 11.5140   2 4.9697 461.02 0.085 101.062 
  2 1226 0.7909 6.9794   1 4.969       
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Table 12 
Cluster solutions for the acute sample with five cognitive variables and four symptom scores 
 

 
 
 
 
 
 
 

Solution Cluster Freq.  RMS SD Max Dist. 
 Near. 

Clus. Dist. Btw. 
Pseudo 
F 

Overall 
R2 CCC 

6 1 1 . 0  4 5.4251 54.96 0.30 29.87 
  2 238 0.6446 3.7599  3 3.4312       
  3 37 0.9052 4.5949  2 3.4312       
  4 51 0.9903 5.8579  3 3.4987       
  5 1 . 0  4 12.4138       
  6 2 1 2.1214  4 7.6221       
5 1 40 0.9092 4.6574  5 6.7212 66.83 0.26 37.53 
  2 1 . 0  3 5.0107     
  3 50 0.9997 5.8434  1 3.1269    
  4 2 1 2.1214  3 6.0443       
  5 237 0.6454 3.7613  1 3.1269       
4 1 79 1.0786 5.9945  2 5.2890 63.99 0.21 31.05 
  2 247 0.6758 4.5328  1 3.5512       
  3 3 1.4061 6.3149  1 5.9856       
  4 1 . 0  3 3.5512       
3 1 10 1.4187 6.2353  3 3.1567 40.67 0.16 8.32 
  2 1 . 0  1 3.1567       
  3 319 0.8784 6.8098  1 6.5785       
2 1 329 0.968 11.3592  2 13.987 23.13 0.09 -5.79 
  2 1 . 0  1 13.987       
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Table 13  
Omnibus MANOVA results for overall sample four-cluster solution with conventional cluster analysis 
 
Variable df F p Partial eta2 

Verbal Memory 2 367.013 0.000 .354 
Visual Memory 2 287.377 0.000 .301 
Visuomotor Speed 2 272.330 0.000 .289 
Reaction Time 2 290.340 0.000 .303 
Impulse Control 2 86.274 0.000 .114 
Migraine Symptoms 2 782.079 0.000 .539 
Cognitive Symptoms 2 837.048 0.000 .556 
Sleep Symptoms 2 524.046 0.000 .439 
Neuropsychiatric 
Symptoms 

2 605.046 0.000 .475 

Overall Symptoms 2 1289.659 0.000 .659 
Age 2 18.932 0.033 .028 
Education 2 11.750 0.048 .017 
Number of Concussionsa 2 .377 .686 .001 
Time Since Injurya 2 .968 .380 .002 
Note. Cluster 2 was excluded because it included only one case. 
aRun in a separate univariate ANOVA because missing data would have substantially reduced sample size for MANOVA. 
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Table 14 
MANOVA contrasts for overall sample four cluster solution from conventional cluster analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note.  Cluster 2 was excluded because it included only one case.  
aRun in a separate univariate ANOVA because missing data would have substantially reduced sample size 
for MANOVA; Bonferroni corrected, p=.025. 

Variable First cluster Second Cluster p 
Verbal Memory 1 3 .000 

4 .000 
3 4 .000 

Visual Memory 1 3 .000 
4 .000 

3 4 .000 
Visuomotor Speed 1 3 .000 

4 .000 
3 4 .000 

Reaction Time 1 3 .000 
4 .000 

3 4 .005 
Impulse Control 1 3 .000 

4 .003 
3 4 .228 

Migraine 
Symptoms 

1 3 .000 
4 .000 

3 4 .000 
Cognitive 
Symptoms 

1 3 .000 
4 .000 

3 4 .000 
Sleep Symptoms 
 

1 3 .005 
4 .000 

3 4 .000 
Neuropsychiatric 
Symptoms 

1 3 .022 
4 .000 

3 4 .000 
Total Symptoms 1 3 .000 

4 .000 
3 4 .000 

Age 1 3 .022 
  4 .627 
 3 4 .378 
Education 1 3 .055 
  4 .601 
 3 4 .515 
Time Since Injurya 1 3 .488 
  4 .744 
 3 4 .982 
Num. Concussionsa 1 3 .693 
  4 .912 
 3 4 .967 



www.manaraa.com

 

	 94	

Table 15 
Cluster Means for the overall sample four-cluster solution from the conventional cluster analysis 
 
Variable Cluster 1 

Mean(SD) 
n=996 

Clinical 
Interpretation 

Cluster 3 
Mean(SD) 
n=208 

Clinical 
Interpretation 

Cluster 4 
Mean(SD) 
n=161 

Clinical 
Interpretation 

Verbal Memory 86.70(8.98) Average 66.41(12.26) Borderline to 
impaired 

76.67(13.38) Average 

Visual Memory 75.91(11.31) Average 55.61(11.41) Borderline 64.49(14.44) Low Average 
Visuomotor Speed 38.41(6.29) Average 27.64(5.78) Low Average 

to impaired 
32.96(7.06) Average 

Reaction Time 0.59(0.07) Average 0.76(0.15) Borderline 0.67(0.11) Low Average 
Impulse Control 5.88(4.27)  11.04(7.86)  8.67(7.27)  
Migraine 
Symptoms 

2.05(2.89)  5.81(5.33)  15.67(7.22)  

Cognitive 
Symptoms 

1.60(2.56)  4.00(4.07)  12.53(4.61)  

Sleep Symptoms 0.70(1.31)  1.38(1.78)  5.24(2.77)  
Neuropsychiatric 
Symptoms 

0.46(1.15)  0.92(1.43)  6.74(5.22)  

Overall Symptoms 5.02(6.41) Normal 12.65(10.87) Unusual 41.78(14.13) Very High 
Age 15.71(1.87)  14.79(1.83)  15.52(1.75)  
Education 9.23(1.76)  8.59(1.63)  9.24(1.66)  
Number of 
Concussions 

1.07(0.25)  1.07(0.25)  1.07(0.26)  

Time Since Injury 12.51(11.03)  13.91(12.67)  13.59(12.67)  
Note. Reaction time is in seconds. Empty cells = no clinical percentile scores available in ImPACT manual. Because clusters include 
males and females and a range of ages, clinical interpretations are approximate based on norms for both high school girls and boys 
aged 13 to 15 from ImPACT technical manual (Lovell, 2011).  
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Table 16  
Omnibus ANOVA results for acute sample five-cluster solution with conventional cluster analysis 
 
Variable df F p Partial Eta2 
Verbal Memory 2 68.299 0.000 .271 
Visual Memory 2 54.882 0.000 .168 
Visuomotor Speed 2 54.640 0.000 .233 
Reaction Time 2 70.612 0.000 .290 
Impulse Control 2 12.509 0.001 .050 
Migraine Symptoms 2 201.453 0.000 .567 
Cognitive Symptoms 2 196.945 0.000 .561 
Sleep Symptoms 2 142.215 0.000 .480 
Neuropsychiatric 
Symptoms 

2 107.929 0.000 .412 

Overall Symptoms 2 368.469 0.000 .705 
Age 2 5.207 0.006 .033 
Education 2 5.998 0.003 .037 
Number of Concussions 2 0.741 0.478 .005 
Time Since Injury 2 0.385 0.681 .002 
Note: Clusters two and four were not included in analyses because they contained only one and two cases, respectively.  
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Table 17 
ANOVA contrasts for acute sample five-cluster solution from conventional cluster analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable First cluster Second Cluster p 
Verbal Memory 1 3 .000 

5 .000 
3 5 .000 

Visual Memory 1 3 .000 
5 .008 

3 5 .000 
Visuomotor Speed 1 3 .000 

5 .000 
3 5 .010 

Reaction Time 1 3 .000 
5 .000 

3 5 .000 
Impulse Control 1 3 .000 

5 .000 
3 5 .000 

Migraine 
Symptoms 

1 3 .000 
5 .000 

3 5 .000 
Cognitive 
Symptoms 

1 3 .000 
5 .000 

3 5 .001 
Sleep Symptoms 
 

1 3 .000 
5 .044 

3 5 .000 
Neuropsychiatric 
Symptoms 

1 3 .000 
5 .043 

3 5 .000 
Total Symptoms 1 3 .000 

5 .000 
3 5 .000 

Age 1 3 .041 
  5 .013 
 3 5 .983 
Education 1 3 .016 
  5 .003 
 3 5 .983 
Time Since Injury 1 3 .792 
  5 .991 
 3 5 .696 
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Table 18 
Cluster Means for the acute five-cluster solution from the conventional cluster analysis 
 
Variable Cluster 1 

Mean(SD) 
n=40 

Clinical 
Interpretation 

Cluster 3 
Mean(SD) 
n=50 

Clinical 
Interpretation 

Cluster 5 
Mean(SD) 
n=237 

Clinical 
Interpretation 

Verbal Memory 67.2(11.59) Borderline 78.42(13.04) Low Average 
to Average 

87.05(8.87) Average 

Visual Memory 55.15(9.45) Borderline 67.52(13.47) Average 76.22(11.38) Average 
Visuomotor Speed 27.09(5.33) Borderline to 

impaired 
35.08(6.37) Average 38.12(6.30) Average 

Reaction Time 0.78(0.18) Borderline 0.64(0.08) Average 0.58(0.07) Average 
Impulse Control 10.30(6.61)  7.5(5.54)  5.992(4.56)  
Migraine 
Symptoms 

5.90(5.10)  14.20(5.50)  2.23(2.99)  

Cognitive 
Symptoms 

4.35(4.40)  11.60(3.95)  1.53(2.43)  

Sleep Symptoms 1.30(1.73)  4.96(2.71)  0.62(1.28)  
Neuropsychiatric 
Symptoms 

1.03(1.35)  5.22(4.47)  0.40(1.15)  

Overall Symptoms 13.03(10.86) Unusual 36.68(9.05) Very High 4.95(6.11) Normal 
Age 14.63(2.00)  15.62(1.59)  15.65(1.88)  
Education 8.53(1.66)  9.46(1.39)  9.43(1.83)  
Number of 
Concussions 

1.08(1.32)  0.82(1.11)  0.91(0.92)  

Time Since Injury 4.58(1.93)  4.38(1.74)  4.60(1.64)  
Note. Reaction time is in seconds. Empty cells = no clinical percentile scores available in ImPACT manual. Because clusters include 
males and females and a range of ages, clinical interpretations are approximate based on norms for both high school girls and boys 
aged 13 to 15 from ImPACT technical manual (Lovell, 2011).  
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Figure 1.  
Graphical representation of the model tested using LCA 
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Figure 2 
Bivariate scatter plot of two-component data for cognitive and symptom variables.  
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Figure 3. Four-cluster solution for five cognitive and four symptom cluster variables in the overall sample. Note Migraine 
Cluster=headaches, visual problems, dizziness, noise sensitivity, light sensitivity, nausea, vomiting, balance problems, 
numbness/tingling; cognitive cluster=fatigue, fogginess, drowsiness, difficulty concentrating, difficulty remembering, cognitive 
slowing; sleep cluster= difficulty falling asleep, sleeping more than usual, sleeping less than usual; NP (neuropsychiatric) 
cluster=more emotional, sadness, nervousness, irritability. Note: Cluster two removed because it contained only one case.  
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Figure 4. Three-cluster solution for five cognitive and four symptom cluster variables in the acute sample. Note Migraine 
Cluster=headaches, visual problems, dizziness, noise sensitivity, light sensitivity, nausea, vomiting, balance problems, 
numbness/tingling; cognitive cluster=fatigue, fogginess, drowsiness, difficulty concentrating, difficulty remembering, cognitive 
slowing; sleep cluster= difficulty falling asleep, sleeping more than usual, sleeping less than usual; NP (neuropsychiatric) 
cluster=more emotional, sadness, nervousness, irritability. Note: clusters two and four were removed because they contained only one 
and two cases, respectively.  
 

-1.5 

-1 

-0.5 

0

0.5

1

1.5

2

Verbal	Memory Vidsual	memory VMS RT Impulse	Control Migraine	Cluster Cognitive	Cluster Sleep	Cluster Neuropsychiatric	

Cluster

Z-
S
co
re

Indicator

Cluster	1 Cluster	3 Cluster	5



www.manaraa.com

 

	 102	

 
 

VITA AUCTORIS 
 

NAME:  Brandon Zuccato 

PLACE OF BIRTH: 

 

Windsor, ON 

YEAR OF BIRTH: 

 

1994 

EDUCATION: 

 

 

 

Cardinal Carter Seconday School, 2012 

 

University of Windsor, B.A., Windsor, ON, 2016 

 

University of Windsor, M.A., Windsor, ON, 2018 

 


	University of Windsor
	Scholarship at UWindsor
	9-6-2018

	Identification and Characterization of Neuropsychological Phenotypes in Sport-Related Concussion
	Brandon Gerald Zuccato
	Recommended Citation


	Zuccato, Brandon Thesis 07.05.18 (1)

